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ABSTRACT

In this paper, we examine the use of the fission-matrix method to calculate the eigenvalue
for a spent fuel pool. The fission matrix coefficients are calculated using MCNP5. In order
to make the method as efficient as possible for real-time calculations, these coefficients are
pre-calculated. Certain simplifying assumptions are made based on geometric considerations,
greatly reducing the amount of pre-computation, and allowing the coefficients to be used on a
variety of problems beyond that for which the coeflicients were calculated. This methodology
is applied to a reference pool that is being designed for the I2S-LWR project. Typically, the
eigenvalue calculation in Monte Carlo is very difficult for loosely coupled problems such as
a spent fuel pool due to source convergence issues, which are not present using the fission
matrix. The fission matrix method has shown accuracy very close to that of MCNP5, while
giving results in several orders of magnitude less time. Total pre-calculation time was less than
a single eigenvalue calculation and can be used across many different pool configurations.
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1. INTRODUCTION

Neutronics calculations in a spent fuel pool are very important in terms of both safeguards and
safety. For safeguards, the aim is to verify nuclear material through accurate radiation measure-
ments. For safety, the pool must be kept sufficiently sub-critical. The work presented here can be
applied to both of these problems for fast and accurate results.

This work is an extension of the fission matrix (FM) method used for the calculation of neutron
sources due to sub-critical multiplication in a spent fuel pool [!, 2]. Aside from being applied to
a different problem, this work differs in the much higher level of detail being used. Previously,
the fission matrix coefficients were being obtained by using entire assemblies as the spatial cells.
Here, we are using individual fuel pins as the basis for the fission matrix cells. This allows not only
higher accuracy, but also the ability obtain more detailed information. This is important because in
the future we plan to use this very accurate modeling to be able to estimate spent fuel composition
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in situ at the spent fuel site using various detectors. Furthermore, we make use of pre-calculated
fission matrix coefficients to be able to quickly calculate eigenvalues and source distributions for a
variety of possible scenarios in real-time.

The fission matrix method with Monte Carlo calculations has seen a rise in popularity in recent
years[3—5], due to the problems posed by source convergence in the Monte Carlo eigenvalue prob-
lem. These methods can greatly accelerate the eigenvalue calculations, but they are still complex
transport simulations. The goal of this work, using pre-calculated databases of fission matrix coef-
ficients, is to be able to compute the eigenvalues in near real-time (seconds to minutes) rather than
hours or days.

This paper will first briefly discuss the basic theory of the FM method in Section 2.1. Next, we
will cover preliminary design of the reference spent fuel pool in Section 2.2. This is followed
by a detailed discussion on the implementation of the algorithm for the reference pool in Section
3. Finally, the performance of the FM method will be evaluated through a set of different pool
configuration benchmark problems, shown in Section 4, followed by concluding remarks in Section
5.

2. BACKGROUND

2.1. Fission Matrix Method

The fission matrix method can take two forms, depending on the type of problem. For a sub-critical
multiplication problem, in which the fission source is driven by an independent source in the spent
fuel (i.e., spontaneous fission and («, n) reactions), the induced fission source in cell 7 is given by
Equation (1).

N
F, = Z(az‘,ij + 0;,;S;) (D)
j=1

Where F) is the induced fission source strength in fuel pin j, S; is the intrinsic (or independent)
source strength in fuel pin j, a; ; is the number of neutrons directly produced in fuel pin ¢ due to a
fission neutron born in fuel pin j, ; ; is the same as a; ; except for intrinsic source neutrons. These
values are different because S and F' should have different spatial and spectral distributions within
each cell. V is the total number of computational cells (which could be a whole assembly, a single
fuel pin, or a fraction thereof). This can also be written in matrix form as below.

F=AF+BS )

Where, F' and S are the fission source and independent source vectors containing the /N source
values. A and B are the “fission matrices” that hold the a; ; and b; ; values.

In this work, however, only the eigenvalue problem is examined, as in Eq. (3).

1 N
F, = - g ai ;I 3)
Jj=1
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The fission matrix method results in a set of /V linear equations, which can be solved for F' and £
given the a; ; coefficients. The chief difficulty is now to calculate the coefficients, and to decide on
a computational cell size that is small enough to give detailed and accurate results, but not so large
that the linear system becomes intractable. This can happen quickly as the matrix is of size /V - N.

2.2. Reference Spent Fuel Pool

Although the fission matrix method can be applied to any spent fuel pool, in this work, our reference
pool is one being designed for the I2S-LWR project[6]. The 12S-LWR uses a 19x19 fuel lattice
containing a total of 336 fuel rods, 24 control/guide tubes, and 1 instrument tube. The fuel used
in the model is U3Sis enriched to 4.95 weight-percent U-235. Note that for simplicity, we are
examining fresh fuel, not spent fuel. Also examined in this paper, are assemblies using 4.45 w-%
U-235. Table I summarizes the parameters used to develop the MCNP fuel assembly model.

Table I: 12S-LWR fuel assembly parameters.

Parameter Value - [cm]
Fuel Rod Pitch 1.21
Fuel Rod Length 388.1
Fuel Rod OD 0914
Fuel Rod ID 0.833
Pellet OD 0.803
Pellet ID 0.254
Guide Tube OD 1.105
Guide Tube ID 1.031

The spent fuel pool was developed based on the specifications of the Westinghouse AP1000 spent
fuel pool [7], which was then modified to accommodate the aforementioned 19x19 I12S-LWR fuel
assembly design. The segment of the spent fuel pool that we are analyzing has a capacity of 81
total fuel assemblies arranged in a 9x9 array. The neutron absorber used on storage cell walls
is the material Metamic® [&], an alloy comprised of B,C and Al-6061. Table II summaries the
parameters used to develop the MCNP spent fuel pool model.

Figure 1a shows a unit cell of the spent fuel pool, including the assembly and cell walls. The entire
9x9 fuel pool section is shown completely filled in Figure 1b.
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Table II: [2S-LWR spent fuel pool parameters.

Parameter Value - [cm]
Storage Cell Pitch 29.367
Storage Cell Width 24.032
Storage Cell Wall Thickness 0.191
Neutron Absorber Width 20.730
Neutron Absorber Thickness 0.269
Gap Between Absorber and Sheathing 0.031
Neutron Absorber Sheathing Thickness:
Internal Walls 0.089
Periphery Walls 0.191
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(a) X-Y model of fuel assembly. (b) 9x9 lattice of assemblies spent fuel pool.

Figure 1: MCNP model used for calculating fission matrix coefficients.

3. METHODOLOGY

In theory, the fission matrix method would require N fixed source calculations in order to calculate
the NxN fission matrix coefficients. If the cell size is a single pin (as is done in this work), then
for an entire 9x9 pool section there would be N =9 -9 - 336 = 27216 fuel pins, and thus separate
fixed-source calculations. This is clearly impractical for a large problem, and defeats the purpose
of “fast” calculations. However, many coefficients will be very very small (e.g., the coefficient
between two distant cells), and many coefficients will be identical to each other (e.g., by observing
to octal symmetry within an assembly). These will be used to greatly reduce the computational
requirement of calculating the coefficients.
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(a) Pin Locations for 49 Source Calculations (b) Source Location for Table III

Figure 2: Assembly Source Locations for Fission Matrix Coeflicient Calculations

The first step is to decide on a computational cell size. Previously, in work with the Atucha-I
reactor[ |, 2], entire assemblies were used as computational cells. However, those assemblies were
much smaller (37 total fuel pins per Atucha assembly vs. 336 per assembly in the I12S assembly),
and there were no absorber plates between assemblies. These factors meant that for Atucha, there
was little gradient in fission rate across the assembly, and so a large cell size could be used. In
addition to these factors, it is also desired to have more detailed information for this project, so it
was decided to use individual fuel pins for the computational cell.

In order to calculate the coefficients, we start with an MCNPS5 [9] model of the 9x9 pool section
filled with assemblies of a given fuel type (Figure 1b). Next, 49 fixed source calculations are
performed, with a source located in one of each of the 49 fuel pins located in one octant of the
center assembly, as shown in Figure 2a. The total fission neutron production rate (i.e., [ dV ¢voy)
is tallied in every surrounding fuel pin. This tally in cell j gives a; ; for the source in cell <. Sample
results for a fission matrix calculation are shown in Table III. In this table, all values have been
multiplied by 100 for readability. The source pin (i.e., cell ) is shown in bold and boxed, and is
also shown in Figure 2b. Only the one assembly is shown. These 49 calculations were repeated for
the two different assembly types (4.95 wt% and 4.45 wt% enrichment). In total, this pre-calculation
of fission matrix coefficients took 47 minutes of CPU time per source location on a single processor
(for a total of 4606 minutes for all source locations and for two material types). Once these have
been calculated, there is no more need for detailed transport calculations.

Octal symmetry of the assembly is used to obtain the coefficients for the rest of the source fuel
pins in this center assembly. In order to obtain the coeflicients for other assemblies, it is assumed
that other assemblies of the same material type have the same coefficients, except for a translation
to their relative assembly position. An illustration of the symmetry and translation assumptions is
shown in Figure 3. In this figure, all the coefficients indicated by the red arrows are assumed to be
identical, as are the blue arrows. Note that there are more coefficients identical to these, but they are
not shown for brevity. A further simplifying assumption is that the coefficient of any pins more than
1 assembly distance away are ignored. These distant assemblies only contribute a total of < 1074
of the total relative reaction rate. These assumptions allow us to construct a fission matrix for the
entire pool (for N =9 -9 - 336 total pins) based on just 49 fixed source calculations. Additionally,
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Table III: Fission Matrix Coefficients for a Single Source Pin (All Values Multiplied by 100)

0.03 0.04 0.03 0.05 0.06 0.10 0.11 0.14 0.18 0.19 0.23 0.24 0.27 0.30 0.29 0.27 0.26 0.29 0.31
0.03 0.03 0.05 0.08 0.10 0.12 0.16 0.16 0.20 0.28 0.28 0.30 0.39 0.42 0.45 0.39 0.33 0.30 0.27
0.03 0.04 0.06 0.09 0.11 0.00 0.20 0.22 0.28 0.00 0.35 0.43 0.51 0.00 0.54 0.57 0.44 0.38 0.30
0.05 0.06 0.09 0.00 0.14 0.17 0.19 0.25 0.27 0.38 0.45 0.46 0.55 0.69 0.73 0.00 0.65 0.43 0.35
0.04 0.06 0.09 0.12 0.15 0.18 0.23 0.26 0.33 0.45 0.50 0.56 0.66 0.77 0.76 0.82 0.73 0.51 0.41
0.04 0.08 0.00 0.11 0.16 0.00 0.25 0.29 0.39 0.00 0.52 0.60 0.75 0.00 1.02 0.92 0.00 0.65 0.46
0.04 0.06 0.09 0.09 0.13 0.20 0.24 0.28 0.37 0.49 0.51 0.61 0.71 0.980.91 0.73 0.60 0.43
0.03 0.06 0.09 0.08 0.13 0.17 0.22 0.28 0.32 0.40 0.49 0.59 0.71 0.80 0.85 0.82 0.67 0.53 0.39
0.05 0.05 0.08 0.10 0.14 0.18 0.20 0.28 0.31 0.43 0.51 0.54 0.62 0.72 0.72 0.70 0.64 0.51 0.40
0.05 0.05 0.00 0.09 0.13 0.00 0.21 0.22 0.33 0.00 0.44 0.48 0.60 0.00 0.61 0.59 0.00 0.48 0.31
0.04 0.04 0.07 0.09 0.12 0.15 0.19 0.20 0.26 0.35 0.38 0.38 0.44 0.53 0.48 0.52 0.47 0.44 0.26
0.03 0.05 0.06 0.09 0.09 0.14 0.17 0.19 0.22 0.25 0.30 0.33 0.38 0.46 0.40 0.41 0.40 0.35 0.23
0.03 0.04 0.06 0.08 0.09 0.11 0.14 0.15 0.18 0.24 0.26 0.27 0.30 0.39 0.36 0.33 0.32 0.30 0.20
0.03 0.04 0.00 0.07 0.09 0.00 0.11 0.14 0.18 0.00 0.27 0.23 0.28 0.00 0.31 0.29 0.00 0.25 0.16
0.03 0.04 0.05 0.07 0.06 0.08 0.10 0.12 0.17 0.18 0.16 0.19 0.25 0.26 0.24 0.23 0.23 0.19 0.12
0.02 0.03 0.04 0.00 0.06 0.06 0.08 0.09 0.15 0.14 0.15 0.15 0.16 0.22 0.20 0.00 0.16 0.13 0.09
0.02 0.02 0.03 0.04 0.07 0.00 0.06 0.07 0.11 0.00 0.13 0.12 0.14 0.00 0.15 0.16 0.13 0.10 0.08
0.01 0.02 0.02 0.03 0.03 0.05 0.05 0.06 0.07 0.10 0.09 0.10 0.10 0.11 0.10 0.09 0.10 0.09 0.06
0.01 0.01 0.02 0.03 0.02 0.03 0.05 0.04 0.06 0.05 0.06 0.09 0.06 0.06 0.07 0.06 0.06 0.07 0.07

we can use the same coefficients for different assembly arrangements inside the pool. The accuracy
of these assumptions is investigated in Section 4.
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Figure 3: Rotational and Translational Symmetry of Fission Matrix Coefficients

When a mix of fuel types is simulated in the pool, the coefficients are used from the material type
in the destination pin (i.e., the j‘th cell). This approximation assumes that most of the difference
in coefficients from material to material is in the value of voy, not in o;. Regardless, the impact
of this should be relatively small since the level of assembly-to-assembly fission is relatively weak
due to the presence of the strong absorbers between assemblies.

Once the coefficients have been calculated for a given pool type, the linear system in Eq. 3 is solved
to determine the fission rate in each pin F' and eigenvalue £ using a Jacobi iteration. First, start
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Table IV: Description of Test Cases

Case # Number of Assemblies Fuel Type

1 1x1 4.95%
2 6x1 4.95%
3 3x3 4.95%
4 9x9 4.95%
5 1x1 4.45%
6 6x1 4.45%
7 3x3 4.45%
8 9x9 4.45%
9 2x1 Mixed
10 6x1 Mixed
11 3x3 Mixed

with a uniform, normalized source E(O) for the O‘th iteration, as in Eq. 4.

1
FY =5 @)
Next, for the m ‘th iteration, we have
| X
FY = oo D e E™, 5)
j=1
where
N
K =3 R, (6)

=1

This iteration is stopped once the k changes are below a set tolerance.

4. RESULTS

4.1. Test Problems

To test the method, several sample problems were examined. These cases are outlined in Table IV
and Figure 4. Cases 1-4 are using only the 4.95% enriched fuel, cases 5-8 are using 4.45% fuel and
cases 9-11 involve a mix of assembly types.
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(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6 (g) Case 7 (h) Case 8
. Empty Assembly
Bl 4.95% Assembly
[[] 4.45% Assembly

(i) Case 9 (j) Case 10 (k) Case 11 (I) Material Legend

Figure 4: Pool Assembly Arrangements for Different Cases

To obtain reference results, all of these cases were run using MCNPS5. Depending on the size of
the case, between 15,000 and 150,000 histories per cycle were used, with 200-300 active cycles
and 100 skipped cycles. For the fission matrix method, the tolerance for the iterative solution
method was set at 1076 for k-eff. Fission Matrix and MCNP5 results for k-effective, as well as
timing information, are shown in Table V. These times are given for a single processor (i.e., not
parallel). As mentioned earlier, the total pre-calculation time for the fission matrix coefficients for
both materials was 4707 minutes. This single set of pre-calculated data is used for all of the cases,
regardless of their configuration.

The fission matrix method gives results very close (within 200 pcm for all cases) to the MCNP
calculations, in a fraction of time (after the first pre-calculations are finished). In addition to good k-
eigenvalue agreement, the fission matrix also produces an accurate fission source distribution. The
normalized fission sources for the 9 assemblies in cases 3 and 11 are shown in Figure 5. Figure 5b
shows asymmetry due to the mix of materials, but in either case, the MCNP results line up very
well with the fission matrix results.
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Table V: Test Case Results

Case | Fission Matrix MCNP Comparison
# k-eff  time | k-eff -0  histories active  time | Diff. Speedup
(min) (pcm) percycle cycles (min) | (pcm)
1 0.7905 0.04 | 0.7903 48 15,000 300 1555 21 35,366
2 10.8317 0.09 | 0.8324 28 30,000 300 4440 -56 47,037
3 0.8626 0.16 | 0.8636 25 30,000 300 4206 | -143 26,378
4 10.8875 2.69 | 0.8893 15 150,000 200 11354 | -192 4,222
5 0.7759 0.04 | 0.7751 38 15,000 300 2050 2 46,597
6 |0.8162 0.10 | 0.8161 27 30,000 300 4381 -97 44,852
7 10.8464 0.16 | 0.8466 27 30,000 300 3344 | -157 20,954
8 |0.8709 2.50 | 0.8729 15 150,000 200 11397 | -199 4,568
9 10.8076 0.05 | 0.8091 38 30,000 300 4152 26 80,745
10 | 0.8253 0.10 | 0.8260 27 30,000 300 4370 -96 42,599
11 | 0.8595 0.17 | 0.8604 27 30,000 300 4253 | -135 24,331
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Figure 5: Assembly-averaged Eigenfunction (i.e., Fission Source) for Cases 3 and 11
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An additional benefit to the fission matrix method is that it does not suffer from the source conver-
gence issue that is notorious in Monte Carlo simulations of loosely coupled systems[5] (as exists
in the spent fuel pool with significant inter-assembly absorbers). In the full pool problems (cases 4
and 8), the materials are symmetric and so a symmetric solution is expected. However, the Monte
Carlo solution (despite very high computation time) exhibits asymmetry (up to 20% in the corner
assemblies), unlike the fission matrix solution. Figure 6 shows the fundamental eigenfunction for
case 4, for both MCNP and the fission matrix method.

9

Flux (Relative)

W 2.00E-02-2.50E-02
1.50E-02-2.00E-02
1.00E-02-1.50E-02

W 5.00E-03-1.00E-02

N 0.00E+00-5.00E-03

¥ Assembly Location
¥ Assembly Location

1 2 3 4 5 6 7 g 9 1 2 3 4 5 & 7 8 9

X Assembly Location x Assembly Location

(a) MCNP5 (b) Fission Matrix

Figure 6: Principle Eigenfunction for Case 4

The fission matrix results, although fairly accurate (under 200 pcm), still sometimes lie outside
the uncertainty bounds of a full Monte Carlo solution. There are several possible causes for this.
The first is that the coefficients themselves have uncertainty, though this is expected to be low.
Second, there is the assumption that assemblies more than one assembly distance away do not
directly affect each other. This factor is small but probably not completely inconsequential. Finally,
the assumption is made that the coefficients are the same for all assemblies. This is probably not true
for assemblies on the edge of the pool, which might have higher coeffients due to higher reflection
from the surrounding water. This item may be considered, an specific coefficients for assemblies
on the edge of the array could be used in the future.

S. CONCLUSIONS

The fission matrix method described in this paper has given results with near to Monte Carlo ac-
curacy (j200 pcm) in a fraction of the time. By using a pre-calculated database of fission matrix
coeflicients obtained with MCNP, subsequent calculations have speedups of approximately three to
four orders of magnitude. This is fast enough for the subsequent calculations (even with different
pool configurations) to be done in seconds of minutes as opposed to hours or days for standard
Monte Carlo. The accuracy of the results will enable future work to monitor spent fuel pools for
safeguards purposes and to determine material content.
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