Demonstration: Real-time Analysis for spent fuel Pool *In-situ* Detection (RAPID)

VIRGINIA TECH TRANSPORT THEORY GROUP (VT³G) NUCLEAR SCIENCE AND ENGINEERING LABORATORY VIRGINIA TECH

RAPID Structure

Pre-Calculation (one time):

- Burnup Calculation to obtain material composition
- 2. Fission Matrix Coefficient Generation

Real-time Analysis:

- 1. Run Fission Matrix Code
- 2. Process Results

Pre-calculation

- **1. SCALE BURNUP CALCULATION**
- 2. SCALE OUTPUT PROCESSING
- 3. MCNP INPUT GENERATION & CALCULATION
- 4. MCNP TALLY PROCESSING

Pre-calculation – Step 1

- At each desired burnup, run a quarter assembly SCALE (t-depl module) model
 - Reflected on −x and −y
 - Octal symmetry
 - 49 fuel materials (each pin within octant is unique)

(\bullet) (●) (●				(49)
				(39)	48
$\overline{\wedge}$					
				0 38	49
		18	24 2	8 36	45
\bigcirc		17	(23)	35	44
(\bullet) (9) (1	2) (16)	$\left(22\right)\left(2$	7) (34)	(43)
	8	J (15)	21 2	6) (33)	(42)
	7 6		00 6		
					41
			19/		40

Pre-calculation – Step 2

• SCALE outputs:

- o neutron/gamma spectra
- \circ actinide/fission product concentrations
- \circ Fission Spectrum (χ)
 - × Fit to Watt fission spectrum (nonlinear regression)

• Process SCALE outputs

- getdat.sh prepares material and source information for MCNP input file
- fitChi.R prepare continuous energy fission spectrum (Watt's spectrum format) from multigroup SCALE generated spectrum for MCNP input file

Pre-calculation –Step 3

- Automatic input file generation for MCNP
 - calMat.f90 generates necessary input block segments as a function of burnup and cooling time (source definition and material composition)
 - makeMCNP.sh concocts input block segments to generate a full MCNP input file
 - o mkzmcnp.sh generate 55 unique input files for each a & b calculation
- Run MCNP for each coefficient as a function of burnup and cooling times

Pre-calculation – Step 4

- Processing MCNP output files to generate database
 - o getFMco.sh extract fission density tally from each MCNP
 output file
 - o rdmc.f90 generates FM coefficient database file

Pre-processing– Estimated Time Requirements

• For a single coefficient calculation and processing.

Step		Time (serial)		
1.1) SCALE R	un	~158 min		
1.2) SCALE Output Processing		n/a		
3) MCNP Fived-	Input Generation	n/a		
source Calculation:	Calculation	~28 min		
4) Tally Proce	essing/Consolidation	~1 min		
	Total	~187 min		

Real-time Analysis

1. INPUTS FOR POOL SETUP 2. EXAMPLES

Input Files

- pool.inp defines the pool structure and range of burnups and cooling times (driver file)
- runName.burn defines assembly-wise axial burnup distribution
- runName.cool defines assembly-wise cooling times

Post Processing

FISSION DENSITY – 1D PROFILES FISSION DENSITY – 3D DISTRIBUTIONS FISSION DENSITY – 2D HEAT MAPS

J

