Using RAPID for solving VT3G-SNFP benchmark

A. Haghighat, W. Walters, and N. Roskoff
Virginia Tech

Virginia Tech Transport Theory Group (VT3G)

Nuclear Science and Engineering Lab (NSEL)

Nuclear Engineering Program, Mechanical Engineering Department
Arlington, VA, USA

For presentation at the OECD Workshops on Benchmarks and Uncertainty Quantification, May 18-22, 2015, Universidad Politecnica de Madrid (UPM), Madrid, Spain
Criticality Calculation

• Standard approach - Full Monte Carlo calculations face difficulties in this area
 • Convergence is difficult due to low coupling between regions (due to absorbers)
 • Convergence can also be difficult to detect
 • Computation times are very long, especially to get detailed information
 • Changing pool configuration requires complete recalculation

• Developed a Multi-stage Response-function Transport approach using the Fission Matrix (FM) technique
Derivation of Fission Matrix (FM) Formulation

• Eigenvalue formulation in operator form is expressed by

\[H\psi = \frac{1}{k} F\psi \]

Where,

\[H = \frac{\Omega}{\mu} \cdot \nabla + \sigma_t(\vec{r}, E) - \int_0^\infty dE' \int_{4\pi} d\Omega' \sigma_s(\vec{r}, E' \rightarrow E, \mu_0) \]

\[F = \frac{\chi(E)}{4\pi} \int_0^\infty dE' \int_{4\pi} d\Omega' v \sigma_f(\vec{r}, E') \]
FM Derivation (cont)

• We may write above equation as

\[H \psi = \frac{1}{k} \chi \tilde{F} \psi \]

Where,

\[\tilde{F} = \frac{1}{4\pi} \int_0^\infty dE' \int_{4\pi} d\Omega' \nu \sigma_f(\vec{r}, E') \]

• Then, solve for

\[\psi = \frac{1}{k} H^{-1} \chi \tilde{F} \psi \]

• Then, we obtain fission density by operating \(\tilde{F} \) onto the above equation to obtain

\[S = \frac{1}{k} AS \]

Where,

\[S = \tilde{F} \psi \]

\[A = \tilde{F} H^{-1} \chi \]
FM Formulations

• **Eigenvalue** formulation

\[AS(\overline{P}) = \int d\overline{P}'a(\overline{P}' \rightarrow \overline{P})S(\overline{P}') \]

- \(k \) is eigenvalue
- is fission source, is fixed source in cell \(j \)
- is the number of fission neutrons produced in cell due to a fission neutron born in cell.

• **Subcritical multiplication** formulation

- is the number of fission neutrons produced in cell due to a source neutron born in cell.
Developed a Multi-stage methodology for determination of FM coefficients

- As the computational cell size, use a single pin
 - $N = 9 \times 9 \times 336 = 27,216$ total fuel pins/ fission matrix cells
 - Considering 24 axial segments per rod, then
 - $N = 653,184$
 - Allows for good accuracy and pin-resolved fission rates

- Standard FM would require $N = 653,184$ separate fixed-source calculations to determine the coefficient matrix
 - One calculation for each pin
 - A matrix of size $N \times N = 4.26649E+11$ total coefficients (6 GB of memory is needed)

- The standard approach is clearly NOT feasible

- We have developed a multi-stage approach to obtain detailed FM coefficients (in the process of filing for a patent)
Remarks on the multi-stage methodology

• **Coefficients are calculated at different stages including:**
 - Pin-wise (axially dependent) for one assembly for different burnups, cooling times, lattice structures, and enrichments
 - For assemblies in the pool (pin-wise or regional)

• **Reduction in computation time and memory**
 - **Computation time**
 - Geometric similarity
 - Geometric symmetry
 - Degree of coupling
 - Sensitivity of the coefficients to different parameters
 - **Memory by indexing**
Solution method - FM approach for eigenvalue problems

• After determination of FM coefficients, then we solve a system of equations based on the power iteration to obtain k and fission density (fundamental eigenfuction)

\[F_i^{(0)} = \frac{1}{N} \quad \& \quad k^{(0)} = 1 \]

\[F_i^{(m+1)} = \frac{1}{k^{(m)}} \sum_{j=1}^{N} a_{i,j} F_j^{(m)} \]

Where, \(k^{(m)} = \sum_{i=1}^{N} F_i^{(m)} \)
RAPID tool

• Developed the RAPID (Real-time Analysis for spent fuel Pool In situ Detection) tool for determination of
 • Eigenvalue
 • Subcritical multiplication
 • Pin-wise, axial fission density

• With application to
 • Criticality safety
 • Safeguards
 • Nonproliferation and materials accountability
RAPID code system - Structure

Pre-Calculation (one time):
 1. Burnup Calculation – to obtain material composition
 2. Fission Matrix Coefficient Generation

Real-time Analysis:
 1. Run Fission Matrix Code
 2. Process Results
Pre-calculation

1. SCALE* burnup calculation
2. SCALE output processing
3. MCNP input generation & calculation
4. MCNP tally processing

Pre-calculation – Step 1

• At each desired burnup, run a quarter assembly SCALE (t-dep1 module) model
 • Reflected on -x and -y
 • Octal symmetry
 • 49 fuel materials (each pin within octant is unique)
Pre-calculation – Step 2

• SCALE outputs:
 • neutron/gamma spectra
 • actinide/fission product concentrations
 • Fission Spectrum \((\chi)\)
 • Fit to Watt fission spectrum (nonlinear regression)

• Process SCALE outputs
 • `getdat.sh` - prepares material and source information for MCNP input file
 • `fitChi.R` - prepare continuous energy fission spectrum (Watt’s spectrum format) from multigroup SCALE generated spectrum for MCNP input file
Pre-calculation – Step 3

- Automatic input file generation for MCNP
 - `calcMat.f90` – generates necessary input block segments as a function of burnup and cooling time (source definition and material composition)
 - `makeMCNP.sh` – concocts input block segments to generate a full MCNP input file
 - `mkzmcnp.sh` – generate 55 unique input files for each a & b calculation

- Run MCNP for each coefficient as a function of burnup and cooling times
Pre-calculation – Step 4

• Processing MCNP output files to generate database
 • `getFMco.sh` - extract fission density tally from each MCNP output file
 • `rdmc.f90` – generates FM coefficient database file
Pre-processing—Estimated Time Requirements

- For a single coefficient calculation and processing.

<table>
<thead>
<tr>
<th>Step</th>
<th>Time (serial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1) SCALE Run</td>
<td>~158 min</td>
</tr>
<tr>
<td>1.2) SCALE Output Processing</td>
<td>n/a</td>
</tr>
<tr>
<td>3) MCNP Fixed-source Calculation:</td>
<td></td>
</tr>
<tr>
<td>3.1) Input Generation</td>
<td>n/a</td>
</tr>
<tr>
<td>3.2) Calculation</td>
<td>~28 min</td>
</tr>
<tr>
<td>4) Tally Processing/Consolidation</td>
<td>~1 min</td>
</tr>
<tr>
<td>Total</td>
<td>~187 min</td>
</tr>
</tbody>
</table>
Real-time Analysis

1. Inputs for pool setup
2. Examples
Input Files

- `pool.inp` – defines the pool structure and range of burnups and cooling times (driver file)
- `runName.burn` – defines assembly-wise axial burnup distribution
- `runName.cool` – defines assembly-wise cooling times
Test Problems (9x9 assemblies)

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6 (g) Case 7 (h) Case 8

(i) Case 9 (j) Case 10 (k) Case 11 (l) Material Legend

<table>
<thead>
<tr>
<th>Case #</th>
<th>Number of Assemblies</th>
<th>Fuel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1x1</td>
<td>4.95%</td>
</tr>
<tr>
<td>2</td>
<td>6x1</td>
<td>4.95%</td>
</tr>
<tr>
<td>3</td>
<td>3x3</td>
<td>4.95%</td>
</tr>
<tr>
<td>4</td>
<td>9x9</td>
<td>4.95%</td>
</tr>
<tr>
<td>5</td>
<td>1x1</td>
<td>4.45%</td>
</tr>
<tr>
<td>6</td>
<td>6x1</td>
<td>4.45%</td>
</tr>
<tr>
<td>7</td>
<td>3x3</td>
<td>4.45%</td>
</tr>
<tr>
<td>8</td>
<td>9x9</td>
<td>4.45%</td>
</tr>
<tr>
<td>9</td>
<td>2x1</td>
<td>Mixed</td>
</tr>
<tr>
<td>10</td>
<td>6x1</td>
<td>Mixed</td>
</tr>
<tr>
<td>11</td>
<td>3x3</td>
<td>Mixed</td>
</tr>
</tbody>
</table>
Case 3 Eigenfunction

Comparison of FM with MC

Reference Solution
Case 11 Eigenfunction

Reference Solution

Comparison with FM with MC

Fission Source

Assembly number

MCNP

FM
Case 4 Eigenfunction distribution

Comparison with FM with MC

Reference Solution
Comparison of calculated M - FM vs. MCNP

<table>
<thead>
<tr>
<th>Case</th>
<th>FM</th>
<th>MCNP</th>
<th>Error in M (FM vs MCNP)</th>
<th>Speedup (FM vs MCNP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Time (min)</td>
<td>M</td>
<td>Time (min)</td>
<td>1-σ Uncertainty</td>
</tr>
<tr>
<td>1x1</td>
<td>3.343353</td>
<td>0.092</td>
<td>3.33155</td>
<td>925</td>
</tr>
<tr>
<td>6x1</td>
<td>4.328244</td>
<td>0.213</td>
<td>4.31336</td>
<td>1198</td>
</tr>
<tr>
<td>3x3</td>
<td>5.428051</td>
<td>0.965</td>
<td>5.40992</td>
<td>1502</td>
</tr>
<tr>
<td>9x9</td>
<td>6.697940</td>
<td>8.17</td>
<td>6.67674</td>
<td>1928</td>
</tr>
</tbody>
</table>

Note that the FM technique also provide pin-wise, axial-dependent fission source or power.
Reference Spent Fuel Pool

- Being developed for I2S-LWR reactor design
- 19x19 U_3Si_2 fuel assemblies
- 4.45 and 4.95 w/o U-235
- Metamic® absorbers (Al-B4C) used between assemblies
- Burnup up to 55 GWd/MTU

One 19x19 Assembly

9x9 segment of spent fuel pool

Whole pool made up of 8 9x9 segments
Fission density plots

- Axial fission density for entire assembly (x-y integrated)
Fission density plots

- x-fission density for entire assembly (y-z integrated)
Fission density plots

- Axial fission density for a single pin (x=10, y=11)
Fission density plots

• x-fission density for a single z-level ($y=10$, $z=72$)
Post Processing: 1x1 Pool Layout

• 3-D Fission Density
 Y-LEVEL ANIMATION

Z-LEVEL ANIMATION
RAPID tool

• The current version of the RAPID can quickly and accurately calculate the eigenvalue and eigenfunction for a spent fuel pool

• By pre-calculating a database of FM coefficients for different conditions, pool simulation can be performed in real-time allowing for changes in configurations (assembly shuffling, removal and addition) for various burnup, cooling times, lattice structure, and enrichments