

1ST WORKSHOP ON METHODOLOGIES FOR SPENT NUCLEAR FUEL POOL SIMULATIONS (SAFETY & SECURITY)

June 23-25, 2015 Virginia Tech Research Center Arlington, VA

NSEL Workshop Series

🐺 Virginia Tech

Introduction

Ali Haghighat Tuesday Morning

Sponsors

- CURTISS Curtiss-Wright
- WirginiaTech National Capital Region (NCR)
- 😵 Nuclear Science and Engineering Lab (NSEL)
- VT Mechanical Engineering Department

Instructors & Speakers

Instructors from VT

- Dr. Alireza Haghighat, Professor of Nuclear Engineering
- Dr. Katherine Royston, Postdoctoral Fellow
- Nathan Roskoff, PhD Student
- Dr. William Walters, Postdoctoral Fellow

Invited Instructors

- Matthew Eyre, Eyre Nuclear Energy Consultancy
- Dr. Vefa Kucukboyaci, Westinghouse

Invited Lunch Speaker

• Kristopher Cummings, NEI

Workshop Organization Support

- Jessica Brow, Project Manager, Continuing & Professional Education, Blacksburg Campus
- Larissa LaCour, Manager, Executive Briefing Center Mgr, Arlington Campus
- Anna Gest, Coordinator, Executive Briefing Center Event, Arlington Campus

Introduction of Participants

Overview of the Purpose and Objectives of the Workshop

Ali Haghighat Tuesday Morning

Spent Nuclear Fuel Storage

- Pool
- Dry cask

• Long Interim Storage

• Permanent storage

ransportation

Handling &

History Spent Fuel Pool (SFP) Design

- Initial generation
 - 'non-poison" racks for restraining the SF assemblies; the racks were anchored (bolted or welded) to the pool slab
 - Issues:
 - 1) ALARA
 - 2) "container" integrity
- "poisoned" free-standing racks
 - Increasing storage capacity
 - Referred to as high-density racks
 - No need for bolting, and overcoming the issues of the initial racks

Issues with pools & racking

- Neutron absorbers [B₄C in metal matrix (Boral, Metamic), or polymer matrix (Boraflex, Carborundum, and tetrabor)]
- Fabrication of racks considering the need for precise dimensions to avoid criticality
- Integrity and safety
 - Pool structure evaluation
 - Fatigue failure
 - Criticality conditions
 - Rack dynamics, e.g., seismic activities

Rack designs

- End connected construction (ECC)
 - Connections only at the box end

- Honeycomb construction (HCC)
 - Continuous connection along entire edges of the box

Simulation of SFP

- Why?
 - Eigenvalue criticality safety
 - Subcritical multiplication inspection, confirmation, safeguards
 - Fission density distribution gamma heating, and material accountability
- Current regulatory requirement
 - Conservative calculations with added uncertainties for achieving a maximum multiplication factor (k_{eff})
- Current issues:
 - Effective use of a pool
 - Misplacement
 - Potential for false alarm due to conservatism

A brief Background on Regulations

- 10 CFR 50 App. A ("Design Criteria for Nuclear Power Plants Criterion 61, Fuel Storage and Handling and Radioactivity Control")
- 10 CFR 50.68 ("Criticality Accident Requirements") was promulgated in 1998
 - Issued through an NRC internal memorandum from L. Kopp to T. Collins; referred to as Kopp Memorandum.
- DSS-ISG-2010-01 "Staff Guidance Regarding the Nuclear Criticality Safety for Spent Fuel Pools," was issued in 2011
- NEI 12-16, Rev. 1 (April 1014) if approved, it will become the permanent version of the aforementioned ISG

And Review Guides

- NUREG-0800, standard review plan, Section 9.1.1, "criticality Safety of Fresh and Spent Fuel Storage and Handling," Revision 4
- NUREG-0800, standard review plan, Section 9.1.2, "New and Spent Fuel Storage," Revision 3.

UirginiaTech

Notes (1)

Criticality Accident - Double Contingency Principle

- ANSI/ANS 8.1 standard, for a spent fuel pool we need to apply Double contingency principle:
 - Sufficient factors of safety should be incorporated such that at least two unlikely, independent, and concurrent events have to occur before a criticality accident is possible
 - Example for a PWR pool
 - Loss of soluble boron below the TS limit
 - Fuel assembly misloading or misplacement

Note (2)

Conservatism - Acceptance Criteria

- These criteria refer to maintaining subcriticality conditions under highly conservative assumptions, for example for
 - Fresh fuel , the criterion sets k<0.95 (with 95% confidence) if the fresh assembly was flooded with water
 - Spent fuel racks, the criterion sets k<0.95 (with 95% confidence) if rack is loaded with fuel of max assembly reactivity and flooded with unborated water

Goals of this workshop (1)

- Review of established methodology
 - Industry state-of-the-art methodology for determination of max. \mathbf{k}_{eff}
 - NETCO Snap-In technology
- Overview of VT³G best-estimate methodologies and tools; introduction to MRT and Fission Matrix (FM)
- Discussion on state-of-the-art methodologies and tools for simulation of SFP; issues associate with the standard Monte Carlo and importance of MRT methodology and the FM method

Goals of this workshop (2)

- Introduction to Hands-on exercises
 - Computer codes and their inputs
 - VT³G utility codes for input processing
- Hands-on exercises
 - Solving seven sample problems addressing different aspects of a SFP simulation

Goals of this workshop (3)

- Discussion on a MRT methodology for SFP safeguards
- Demonstration of VT³G tools
 - INSPCT-s (Inspection of Spent-nuclear-fuel Pool Computation Tool, spreadsheet version)
 - RAPID (Real-time Analysis of spent-nuclear-fuel Pool *In-Situ* Detection)

Thanks!

Questions?

Completed June 2011

