MRT Methodologies for Real-Time Simulation of Nuclear Systems

Prof. Alireza Haghighat
Virginia Tech
Virginia Tech Transport Theory Group (VT3G)
Director of Nuclear Engineering and Science Lab (NSEL) at Arlington Nuclear Engineering Program, Mechanical Engineering Department

Mechanical and Aerospace Engineering Department, Sept 24-25, 2015
Objective

Determine the expected number of particles in a phase space \(d^3rdEd\Omega\) at time \(t\):

\[n(\vec{r}, E, \Omega, t)d^3rdEd\Omega \]

Number density is used to determine angular flux/current, scalar flux and current density, partial currents, and reaction rates.
Simulation Approaches

• **Deterministic Methods**
 • Solve the linear Boltzmann equation to obtain the expected flux in a phase space

• **Statistical Monte Carlo Methods**
 • Perform particle transport experiments using random numbers (RN’s) on a computer to estimate average properties of a particle in phase space
Deterministic – Linear Boltzmann Equation

- Integro-differential form

\[
\Omega \cdot \nabla \Psi(\vec{r}, E, \hat{\Omega}) + \sigma(\vec{r}, E)\Psi(\vec{r}, E, \hat{\Omega}) = \\
\int_{0}^{\infty} dE' \int_{0}^{4\pi} d\Omega' \sigma_s(\vec{r}, E' \rightarrow E, \hat{\Omega}' \rightarrow \hat{\Omega})\Psi(\vec{r}, E', \hat{\Omega}) + \\
\frac{\chi(E)}{4\pi} \int_{0}^{\infty} dE' \int_{0}^{4\pi} d\Omega' \nu \sigma_f(\vec{r}, E')\Psi(\vec{r}, E', \hat{\Omega}) + S(\vec{r}, E, \hat{\Omega})
\]

- Integral form

\[
\psi(\vec{r}, E, \hat{\Omega}) = \int_{0}^{R} d |\vec{r} - \vec{r'}| Q(r') e^{-\tau_E(\vec{r}, \vec{r'})} + \psi(\vec{r'}, E, \hat{\Omega}) e^{-\tau_E(\vec{r}, \vec{r'})}
\]
Integro-differential - Solution Method

- **Angular variable**: *Discrete Ordinates (Sn) method*:
 A discrete set of directions \(\{ \hat{\Omega}_m \} \)
 and associated weights \(\{ w_m \} \) are selected
 \[
 \hat{\Omega}_m \cdot \nabla \Psi (\vec{r}, E, \hat{\Omega}_m) + \sigma (\vec{r}, E) \Psi (\vec{r}, E, \hat{\Omega}_m) = q (\vec{r}, E, \hat{\Omega}_m)
 \]

- **Spatial variable**
 Integrated over fine meshes using FD or FE methods
 \[
 \Psi_{m,g,A} = \frac{\int d^3r \Psi_{m,g} (\vec{r})}{\Delta V_{ijk}}
 \]

- **Energy variable**
 Integrate over energy intervals to prepare multigroup cross sections, \(\sigma_g \)
Integral - Solution method

- **Method of Characteristic (MOC):** Model is partitioned into coarse meshes and transport equation is solved along the characteristic paths \((k)\) (parallel to each discrete ordinate \((n)\)), filling the mesh, and averaged

\[
\psi_{g,m,i,k}(t_{m,i,k}) = \psi_{g,m,i,k}(0) \exp(-\sigma_{g,i} t_{m,i,k}) + \frac{Q_{g,m,i}}{\sigma_{g,i}} (1 - \exp(-\sigma_{g,i} t_{m,i,k}))
\]
Deterministic - Issues/Challenges/Needs

- Robust numerical formulations (e.g., adaptive differencing strategy)
- Algorithms for improving efficiency (i.e., acceleration techniques – synthetic formulations and pre-conditioners)
- Use of advanced computing hardware & software environments
- Pre- and post-processing tools
- Multigroup cross section preparation
- Benchmarking
Monte Carlo Methods

• Perform an experiment on a computer; “exact” simulation of a physical process

Path-length

\[r = \frac{-\ln \xi}{\Sigma_t} \]

Type of collision

\[\xi \leq \frac{\Sigma_s}{\Sigma_t} \]

Scattering angle (isotropic scattering)

\[\mu_0 = 2\xi - 1 \]

Sample

\[S (r, E, \Omega) \]

Tally (count)

Issue:

Precise expected values; i.e., small relative uncertainty,

\[R_x = \frac{\sigma_x}{\bar{x}} \]

Variance Reduction techniques are needed for real-world problems!
Deterministic vs. Monte Carlo

<table>
<thead>
<tr>
<th>Item</th>
<th>Deterministic</th>
<th>MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometry</td>
<td>Discrete/ Exact</td>
<td>Exact</td>
</tr>
<tr>
<td>Energy treatment – cross section</td>
<td>Discrete</td>
<td>Exact</td>
</tr>
<tr>
<td>Direction</td>
<td>Discrete/ Truncated series</td>
<td>Exact</td>
</tr>
<tr>
<td>Input preparation</td>
<td>Difficult</td>
<td>simple</td>
</tr>
<tr>
<td>Computer memory</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Computer time</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>Numerical issues</td>
<td>Convergence</td>
<td>Statistical uncertainty</td>
</tr>
<tr>
<td>Amount of information</td>
<td>Large</td>
<td>Limited</td>
</tr>
<tr>
<td>Parallel computing</td>
<td>Complex</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Why not MC only?

• Because of the difficulty in obtaining detail information with reliable statistical uncertainty in a reasonable time

• Example situations
 • Real-time simulations
 • Obtaining energy-dependent flux distributions,
 • Time-dependent simulations,
 • Sensitivity analysis,
 • Determination of uncertainties
Why not use advanced hardware?

- VT³G has developed vector and parallel algorithms, and developed two large codes: PENTRAN (1996) and TITAN (2004)

Why not hybrid methods?

- **Deterministic-deterministic** (differencing schemes, different numerical formulations, generation of multigroup cross sections, generation of angular quadratures, acceleration techniques) (VT³G has developed various algorithms; a few have been implemented in PENTRAN and TITAN)

- **Monte Carlo-deterministic** (variance reduction with the of use deterministic adjoint) (VT³G has developed CADIS, A³MCNP in 1997; CADIS has become popular recently!)
<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>Vector computing of 1-D Sn spherical geometry algorithm</td>
<td>Prof. Haghighat</td>
</tr>
<tr>
<td>1989</td>
<td>Development an adjoint methodology for simulation TMI-2 reactor</td>
<td>Prof. R. Mattis, Pitt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. B. Petrovic, GT</td>
</tr>
<tr>
<td>1989</td>
<td>Vector and parallel processing of 2-D Sn algorithms</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>Simulation of Reactor Pressure Vessel (RPV)</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>Parallel processing of 2-D Sn algorithms & Acceleration methods</td>
<td>Dr. M. Hunter, W</td>
</tr>
<tr>
<td>1994</td>
<td>Determination of uncertainties in the RPV transport calculations</td>
<td>Prof. B. Petrovic, GT</td>
</tr>
<tr>
<td>1994</td>
<td>3-D parallel Sn Cartesian algorithms</td>
<td>Dr. G. Sjoden, DOD</td>
</tr>
<tr>
<td>1995</td>
<td>Monte Carlo for Reactor Pressure Vessel (RPV) benchmark using Weight-window generator; deterministic benchmarking of power reactors</td>
<td>Dr. J. Wagner, ORNL</td>
</tr>
<tr>
<td>1995</td>
<td>Directional Theta Weight (DTW) differencing formulation</td>
<td>Dr. B. Petrovic</td>
</tr>
<tr>
<td>1997</td>
<td>PENTRAN (Parallel Environment Neutral Particle TRANsport) code system</td>
<td>Dr. G. Sjoden, DOD</td>
</tr>
<tr>
<td>1997</td>
<td>CADIS (Consistent Adjoint Driven Importance Sampling) formulation for Monte Carlo Variance Reduction</td>
<td>Dr. J. Wagner, ORNL</td>
</tr>
<tr>
<td>1997</td>
<td>A³MCNP (Automated Adjoint Accelerate MCNP)</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Parallel Angular & Spatial Multigrid acceleration methods for Sn transport</td>
<td>Dr. V. Kucukboyaci, W</td>
</tr>
<tr>
<td>2001</td>
<td>Hybrid algorithm for PGNNA device</td>
<td>Dr. B. Petrovic</td>
</tr>
<tr>
<td>2001</td>
<td>PENMSH & PENINP for mesh and input generation of PENTRAN</td>
<td>Prof. Haghighat</td>
</tr>
<tr>
<td>2001</td>
<td>Ordinate Splitting (OS) technique for modeling a x-ray CT machine</td>
<td>Prof. Haghighat</td>
</tr>
<tr>
<td>2001</td>
<td>Simplified Sn Even Parity (SSn-EP) algorithm for acceleration of the Sn method</td>
<td>Dr. G. Longonil, PNNL</td>
</tr>
<tr>
<td>2004</td>
<td>RAR (Regional Angular Refinement) formulation</td>
<td>Dr. A. Patchimpattapong, IAEA</td>
</tr>
<tr>
<td>2004</td>
<td>Pn-Tn angular quadrature set</td>
<td>Dr. A. Alpan, W</td>
</tr>
<tr>
<td>2004</td>
<td>FAST (Flux Acceleration Simplified Transport)</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>PENXMSH, An AutoCad driven PENMSH with automated meshing and parallel decomposition</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>CPXSD (Contributon Point-wise cross-section Driven) for generation of multigroup libraries</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>TITAN hybrid parallel transport code system & a new version of PENMSH called PENMSHXF</td>
<td>Dr. C. Yi, GT</td>
</tr>
<tr>
<td>2007</td>
<td>ADIES (Angular-dependent Adjoint Driven Electron-photon Importance Sampling) code system</td>
<td>Dr. B. Dionne, ANL</td>
</tr>
<tr>
<td>2011</td>
<td>TITAN fictitious quadrature set and ray-tracing for SPECT (Single Photon Emission Computed Tomography)</td>
<td>Dr. C. Yi, GT</td>
</tr>
<tr>
<td>2011</td>
<td>FMBMC-ICEU (Fission Matrix Based Monte Carlo with Initial source and Controlled Elements and Uncertainties)</td>
<td>Dr. M. Wenner, W</td>
</tr>
<tr>
<td>2011</td>
<td>New WCOS (Weighted Circular Ordinated Splitting) Technique for the TITAN SPECT Formulation</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Adaptive Collision Source (ACS) for Sn transport</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>AIMS (Active Interrogation for Monitoring Special-nuclear-materials), a MRT algorithm</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>TITAN-SDM - includes Subgroup Decomposition Method for multigroup transport calculation</td>
<td>N. Roskoff, PhD Stud.</td>
</tr>
<tr>
<td>2014</td>
<td>TITAN-IR - TITAN with iterative image Reconstruction for SPECT</td>
<td>K. Royston, PhD Cand.</td>
</tr>
</tbody>
</table>
Remarks

• Particle transport-based methodologies are needed for real-time simulation

• Particle transport codes, even those parallel with hybrid algorithms, are slow because of a large number of unknowns
Development of Transport Formulations for Real-Time Applications

• *Physics-Based* transport methodologies are needed:

• Developed **Multi-stage, Response-function Transport (MRT) methodology**
 • Based on problem physics *partition* a problem into *stages* (sub-problems),
 • For each stage employ response method and/or adjoint function methodology
 • Pre-calculate response-function or adjoint-function using an accurate and fast transport code
 • Solve a linear system of equations to couple all the stages
Examples for **MRT Algorithms**

- **Nondestructive testing**: Optimization of the Westinghouse’s PGNNA active interrogation system for detection of RCRA (Resource Conversation and Recovery Act) (e.g., lead, mercury, cadmium) in waste drums (partial implementation of MRT; 1999)

- **Nuclear Safeguards**: Monitoring of spent fuel pools for detection of fuel diversion (2007) (funded by LLNL)

- **Nuclear nonproliferation**: Active interrogation of cargo containers for simulation of special nuclear materials (SNMs) (2013) (in collaboration with GaTech)

- **Spent fuel safety and security**: Real-time simulation of spent fuel pools for determination of eigenvalue, subcritical multiplication, and material identification (partly funded by I²S project, led by GaTech) (Ongoing)

- **Image reconstruction for SPECT (Single Photon Emission Computed Tomography)**: Real-time simulation of an SPECT device for generation of project images using an MRT methodology and Maximum Likelihood Estimation Maximization (MLEM) (filed for a patent, June 2015)
Real-time simulations for commercial spent fuel pools

Criticality Safety, Nonproliferation & Safeguards applications
Background

• **Standard approach - Full Monte Carlo calculations face difficulties in this area**
 • Convergence is difficult due to low coupling between regions (due to absorbers)
 • Convergence can also be difficult to detect
 • Computation times are very long, especially to get detailed information
 • Changing pool configuration requires complete recalculation

• **Fission Matrix (FM) approach – It can address the above issues**
 • Fission matrix coefficients are pre-calculated using Monte Carlo
 • Computation times are much shorter, with no convergence issues
 • Detailed fission distributions are obtained at pin level
 • Changing pool assembly configuration does not require new pre-calculations
 • No additional Monte Carlo
Derivation of Fission Matrix (FM) Formulation

• Eigenvalue formulation in operator form is expressed by

\[H\psi(\vec{p}) = \frac{1}{k} F\psi(\vec{p}) \]

Where,

\[\vec{p} = (\vec{r}, E, \Omega) \]

\[H = \hat{\Omega} \cdot \nabla + \sigma_t(\vec{r}, E) - \int_0^{\infty} dE' \int_{4\pi} d\Omega' \sigma_s(\vec{r}, E' \rightarrow E, \mu_0) \]

\[F = \frac{\chi(E)}{4\pi} \int_0^{\infty} dE' \int_{4\pi} d\Omega' \nu \sigma_f(\vec{r}, E') \]
FM Derivation (cont)

• We may rewrite above equation as

\[S(\bar{p}) = \frac{1}{k} AS(\bar{p}) \]

Where,

\[S = F\psi , \quad A = \bar{F} H^{-1} \chi , \quad \& \]

\[F = \frac{1}{4\pi} \int_{0}^{\infty} dE' \int_{4\pi} d\Omega' v\sigma_f(\bar{r},E') \]
Fission Matrix (FM) Formulation

• **Eigenvalue**

\[F_i = \frac{1}{k} \sum_{j=1}^{N} a_{i,j} F_j \]

- \(k \) is eigenvalue
- \(F_j \) is fission source, \(S_j \) is fixed source in cell \(j \)
- \(a_{i,j} \) is the number of fission neutrons produced in cell \(i \) due to a fission neutron born in cell \(j \)

• **Subcritical multiplication**

\[F_i = \sum_{j=1}^{N} \left(a_{i,j} F_j + b_{i,j} S_j^{\text{intrinsic}} \right) \]

\[M = \frac{\sum_{j=1}^{N} (F_j + S_j^{\text{intrinsic}})}{\sum_{j=1}^{N} S_j^{\text{intrinsic}}} \]

- \(b_{i,j} \) is the number of fission neutrons produced in cell \(i \) due to a source neutron born in cell \(j \).
Developed a Multi-stage methodology for determination of FM coefficients

- As the computational size (for I²S reactor design)
 - $N = 9 \times 9 \times 336 = 27,216$ total fuel pins/ fission matrix cells
 - Considering 24 axial segments per rod, then
 - $N = 653,184$

- Standard FM would require $N = 653,184$ separate fixed-source calculations to determine the coefficient matrix
 - A matrix of size $N \times N = 4.26649E+11$ total coefficients (> 3.4 TB of memory is needed)

- The standard approach is clearly NOT feasible

- We have developed a multi-stage approach to obtain detailed FM coefficients (in the process of filing for a patent)
RAPID tool

• Developed the RAPID (Real-time Analysis spent fuel Pool In situ Detection) tool for determination of
 • Eigenvalue
 • Subcritical multiplication
 • Pin-wise, axial fission density

• With application to
 • Criticality safety
 • Safeguards
 • Nonproliferation and materials accountability
RAPID code system - Structure

Pre-Calculation (one time):
 1. Burnup Calculation – to obtain material composition
 2. Fission Matrix Coefficient Generation

Real-time Analysis:
 1. Run Fission Matrix Code
 2. Process Results
Test Problems (9x9 assemblies)

(a) Case 1
(b) Case 2
(c) Case 3
(d) Case 4
(e) Case 5
(f) Case 6
(g) Case 7
(h) Case 8
(i) Case 9
(j) Case 10
(k) Case 11
(l) Material Legend

<table>
<thead>
<tr>
<th>Case #</th>
<th>Number of Assemblies</th>
<th>Fuel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1x1</td>
<td>4.95%</td>
</tr>
<tr>
<td>2</td>
<td>6x1</td>
<td>4.95%</td>
</tr>
<tr>
<td>3</td>
<td>3x3</td>
<td>4.95%</td>
</tr>
<tr>
<td>4</td>
<td>9x9</td>
<td>4.95%</td>
</tr>
<tr>
<td>5</td>
<td>1x1</td>
<td>4.45%</td>
</tr>
<tr>
<td>6</td>
<td>6x1</td>
<td>4.45%</td>
</tr>
<tr>
<td>7</td>
<td>3x3</td>
<td>4.45%</td>
</tr>
<tr>
<td>8</td>
<td>9x9</td>
<td>4.45%</td>
</tr>
<tr>
<td>9</td>
<td>2x1</td>
<td>Mixed</td>
</tr>
<tr>
<td>10</td>
<td>6x1</td>
<td>Mixed</td>
</tr>
<tr>
<td>11</td>
<td>3x3</td>
<td>Mixed</td>
</tr>
</tbody>
</table>
Case 3 Eigenfunction

Comparison of RAPID with MC
Case 11 Eigenfunction

Comparison with RAPID with MC

Reference Solution

Fission Source

Assembly number

Nuclear Science and Engineering Lab (NSEL) at Arlington
Case 4 Eigenfunction distribution

Comparison with RAPID with MC

Reference Solution

Nuclear Science and Engineering Lab (NSEL) at Arlington
Comparison of calculated M - RAPID vs. MCNP

<table>
<thead>
<tr>
<th>Case</th>
<th>FM M</th>
<th>FM Time (min)</th>
<th>MCNP M</th>
<th>MCNP Time (min)</th>
<th>1-σ Uncertainty</th>
<th>Error in M (FM vs MCNP)</th>
<th>Speedup (FM vs MCNP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x1</td>
<td>3.343353</td>
<td>0.092</td>
<td>3.33155</td>
<td>925</td>
<td>0.0010</td>
<td>0.35%</td>
<td>10062</td>
</tr>
<tr>
<td>6x1</td>
<td>4.328244</td>
<td>0.213</td>
<td>4.31336</td>
<td>1198</td>
<td>0.0010</td>
<td>0.35%</td>
<td>5613</td>
</tr>
<tr>
<td>3x3</td>
<td>5.428051</td>
<td>0.965</td>
<td>5.40992</td>
<td>1502</td>
<td>0.0011</td>
<td>0.35%</td>
<td>1558</td>
</tr>
<tr>
<td>9x9</td>
<td>6.697940</td>
<td>8.17</td>
<td>6.67674</td>
<td>1928</td>
<td>0.012</td>
<td>0.32%</td>
<td>236</td>
</tr>
</tbody>
</table>

Note that the FM technique also provide pin-wise, axial-dependent fission source or power.
3-D Fission Density

Y-LEVEL ANIMATION

Z-LEVEL ANIMATION
Introduction to Single Photon Emission Computed Tomography (SPECT)

- 17 million procedures in the US in 2010
- Nuclear medicine imaging procedure used to examine myocardial perfusion, bone metabolism, thyroid function, etc.
- *Functional* imaging modality
- Radiopharmaceutical injected/ingested and localizes in a part of the body
- Emitted radiation detected at a gamma camera to form 2D projection images at different angles
- Collimator in front of the gamma camera provides spatial resolution
- Projection images can be reconstructed to form a 3D image of the radionuclide distribution
TITAN Deterministic SPECT Simulation

• The collimator in SPECT poses a challenge for deterministic modeling:
 • Spatial discretization
 • Angular discretization

• Typical dimensions include:
 • Hole diameter \(\sim 0.18\) cm
 • Septa thickness \(\sim 0.02\) cm
 • Length \(\sim 3.3\) cm
 • Acceptance Angle \(\sim 1.6^\circ\)

\(S_{20}\) Quadrature Set (440 directions)
\(S_{86}\) Quadrature Set (7568 directions)
4-Stage TITAN Hybrid formulation for SPECT simulation

Stage 1 - Sn calculation in phantom

Stage 2 – Selection of fictitious angular quadrature & Circular OS (COS) directions

Stage 3 – Sn with fictitious quadrature

Stage 4 – ray tracing
Example of Benchmarking TITAN Projection Images

SIMIND Comparison
NURBS-based cardiac-torso (NCAT) phantom with Tc-99m (140 keV)

<table>
<thead>
<tr>
<th>Number of Projection Images</th>
<th>1</th>
<th>4</th>
<th>8</th>
<th>45</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMIND Time (sec)</td>
<td>17</td>
<td>67</td>
<td>140</td>
<td>754</td>
<td>1508</td>
</tr>
<tr>
<td>TITAN Time (sec)</td>
<td>200</td>
<td>202</td>
<td>212</td>
<td>274</td>
<td>352</td>
</tr>
</tbody>
</table>

Times are for a single processor
Image Reconstruction

• Filtered backprojection (FBP) (Cormack 1963)
 • Analytic image reconstruction
 • Traditional standard for reconstruction due to speed and simplicity
 • Issues: filter choice, amplification of high-freq. noise, streak artifacts, cannot incorporate system details

• Algebraic reconstruction technique (ART) (Gordon et al. 1970)
 • Iterative constraint-based reconstruction
 • Allows the incorporation of prior knowledge
 • Issues: noisy, computationally expensive

• Maximum likelihood expectation maximization (ML-EM) (Shepp & Vardi 1982)
 • Iterative statistical reconstruction
 • For emission tomography, has recently surpassed FBP in popularity
 • Advantages include: Poisson statistics, nonnegativity constraint, incorporation of system details
 • Issues: increasing noise, computationally expensive
ML-EM Brief Derivation

Mean number of photons detected in detector bin \(d \):

\[
\bar{n}_d = \sum_{b=1}^{B} p_{b,d} \hat{\lambda}_b
\]

\(p_{b,d} \): probability that photon emitted in voxel \(b \) is detected in bin \(d \) (system matrix)

\(\hat{\lambda}_b \): mean number of emissions in voxel \(b \)

Number of detected particles is a Poisson random variable, so the probability of detecting \(n_d^* \) photons in detector bin \(d \):

\[
P(n_d^*) = e^{-\bar{n}_d} \frac{\bar{n}_d^{n_d^*}}{n_d^*!}
\]

Likelihood function:

\[
L(\hat{\lambda}) = P(n_d^* \mid \hat{\lambda}) = \prod_{d=1}^{D} P(n_d^*) = \prod_{d=1}^{D} e^{-\bar{n}_d} \frac{\bar{n}_d^{n_d^*}}{n_d^*!}
\]

Log-likelihood will have the same maximum location:

\[
\ln(L(\hat{\lambda})) = \sum_{d=1}^{D} (-\bar{n}_d + n_d^* \ln(\bar{n}_d) - \ln(n_d^*))
\]

\[
= \sum_{d=1}^{D} \left[-\sum_{b=1}^{B} p_{b,d} \hat{\lambda}_b + n_d^* \ln(\sum_{b=1}^{B} p_{b,d} \hat{\lambda}_b) - \ln(n_d^*) \right]
\]

Take derivative and set to zero to find maximum:

\[
\frac{\partial \ln(L(\hat{\lambda}))}{\partial \hat{\lambda}_d} = -\sum_{d=1}^{D} p_{b,d} + \sum_{d=1}^{D} \frac{n_d^*}{\sum_{b'=1}^{B} p_{b',d} \hat{\lambda}_{b'}} p_{b,d} = 0
\]

Multiply by \(\hat{\lambda}_b \) and solve:

\[
\hat{\lambda}_b^{(i+1)} = \frac{\hat{\lambda}_b^{(i)}}{\sum_{d=1}^{D} p_{b,d}} \sum_{d=1}^{D} \frac{n_d^*}{\sum_{b'=1}^{B} p_{b',d} \hat{\lambda}_{b'}^{(i)}} p_{b,d}, \quad b = 1, \ldots, B
\]
Deterministic Reconstruction for SPECT (DRS)

- Projection data calculated by deterministic transport code
- Particle transport fully modeled in patient for forward projection
- Detailed system matrix never needs to be created
- Backprojection uses simple system matrix

\[
\hat{\lambda}_b^{(i+1)} = \frac{\hat{\lambda}_b^{(i)}}{\sum_{d=1}^{D} p_{b,d}} \sum_{d=1}^{D} \hat{n}_d^{(i)} p_{b,d}, \quad b = 1, \ldots, B
\]

- A script was developed to allow anyone to use this method with any code that creates projection data for a given source distribution
TITAN with Image Reconstruction (TITAN-IR)

- Incorporate DRS methodology into TITAN code to take advantage of:
 - Fast generation of SPECT projection images
 - Parallel features

- Implement:
 - ML-EM reconstruction
 - Parallel image reconstruction
 - Image quality metrics (contrast and noise in reconstruction, mean relative error and mean squared error in projection data)
 - Post-reconstruction filtering
TITAN with Image Reconstruction (TITAN-IR)

Initialize problem

Particle transport in patient

\[H \psi = \lambda^{(i)} \]

For each angle \(\alpha \):
- Generate projection
- Backproject

\[x_b = x_b + \sum_{d \in \alpha} n_d^* p_{b,d} \]

Modify source & normalize

\[\lambda_b^{(i+1)} = \frac{\lambda_b^{(i)}}{\sum_d p_{b,d}} x_b \]

Are tolerances met?

Yes

Reconstructed image

No

\[i = i + 1 \]
Analyzing TITAN-IR

1) 2-D elliptical water phantom with two circles of high intensity source (i.e., lesions)

2) Jaszczak: 3-D quality assurance phantom, cold sphere region

3) NCAT: NURBS-based cardiac-torso, 3-D heterogeneous phantom
Reconstruction Analysis

• Visually display reconstructed images
• Plot profiles through important areas of reconstructed images
• Quality metrics:

 • Mean relative error (MRE)
 \[
 \text{MRE} = \frac{1}{N_d} \sum_{d=1}^{N_d} \left| \frac{\hat{n}_d^{(i)} - n_d^*}{n_d^*} \right|
 \]

 • Mean squared error (MSE)
 \[
 \text{MSE} = \frac{1}{N_d} \sum_{d=1}^{N_d} \left(\frac{\hat{n}_d^{(i)} - n_d^*}{n_d^*} \right)^2
 \]

 • Contrast
 \[
 C_l = \frac{\bar{I}_l - \bar{I}_0}{\bar{I}_0}
 \]

 • Noise
 \[
 \text{Noise} = \frac{1}{\bar{I}_0} \left(\frac{\sum_{i=1}^{N_V} (I_i - \bar{I}_0)^2}{N_V - 1} \right)^{1/2}
 \]

 \(\hat{n}_d^{(i)} \) = counts in detector bin \(d \) at iteration \(i \)

 \(n_d^* \) = measured counts in detector bin \(d \)

 \(\bar{I}_l \) = average source intensity in lesion

 \(\bar{I}_0 \) = average reference background intensity
1) 2-D Phantom

- 2-dimensional, homogeneous, elliptical water phantom
- Tc-99m source (140 keV)
- Source strength of 2 in circles and 1 in rest of phantom
- 64 x 64 voxels (0.35 x 0.35 cm²)
- System matrix $p(b,d)$ generated by Prof. Fessler’s Image Reconstruction Toolbox* in MATLAB (models attenuation only)
- Reference projection images obtained at 120 angles over 360° using the SIMIND Monte Carlo code
- Initial guess is a uniform source distribution

*J. A. Fessler, “Image reconstruction toolbox,” University of Michigan
2-D Phantom
Reference projection data generated by the SIMIND Monte Carlo code* with no noise and a perfect collimator

2-D Phantom Image Reconstruction with TITAN

Reconstructed sinograms and images using TITAN for forward projection of 120 angles over 360°

<table>
<thead>
<tr>
<th>5 Iterations</th>
<th>10 Iterations</th>
<th>20 Iterations</th>
<th>40 Iterations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Royston and Haghighat, *ANS RPSD 2014*, Knoxville, TN
2D Phantom: Profiles Through Reconstruction with TITAN

Profiles through the reconstructed source distributions for different numbers of iterations
2D Phantom: Comparing Reconstructed Images

Contrast (C_l) and Log-likelihood (l) as a function of number of iterations

\[
C_l = \frac{\overline{T}_l - \overline{T}_0}{\overline{T}_0}
\]

\overline{T}_l = average source intensity in large circle
\overline{T}_0 = average reference background intensity

\[
\text{Likelihood} = L(\hat{\lambda}) = \prod_{d=1}^{D} \frac{e^{-\overline{n}_d} \overline{n}_d^{n_d}}{n_d^{n_d^*}}
\]

\[
l(\hat{\lambda}) = \sum_{d=1}^{D} n^*(d) \log(\hat{n}(d)) - \sum_{d=1}^{D} \hat{n}(d)
\]

n^* = measured projection data
\hat{n} = estimated projection data
2) Jaszczak Cold Sphere Phantom

- 6 cold spheres with radii of 0.635, 0.795, 0.955, 1.27, 1.59, and 1.9 cm
- 185 MBq Tc-99m source (140 keV)
- Reference projection data obtained at 64 angles over 360° using SIMIND
- System matrix \(p(b,d) \)
 - Generated by Image Reconstruction Toolbox in MATLAB (models attenuation but not scatter)
 - Dimensions of (64x64x32) by (64x32x64)
- Initial guess is a uniform source distribution
- Three cases of projection data:
 1) No noise & no collimator blur
 2) Noisy & no collimator blur
 3) Noisy collimated data
Jaszczak Phantom: Noiseless Projection Data with No Collimator Blur

Contrast in cold spheres in center slice of TITAN-IR (S_6, coarse mesh) image
Jaszczak Cold Sphere Phantom: Noisy Projection Data with No Collimator Blur

![Graph showing the contrast of spheres with different diameters over iteration number.](image)
Jaszczak Cold Sphere Phantom: Noisy Collimated Projection Data

<table>
<thead>
<tr>
<th>Collimator</th>
<th>Hole Diameter</th>
<th>Septa Thickness</th>
<th>Length</th>
<th>Acceptance Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE-LEGPM</td>
<td>0.25 cm</td>
<td>0.03 cm</td>
<td>4.10 cm</td>
<td>1.83°</td>
</tr>
<tr>
<td>SE-LEHR†</td>
<td>0.111 cm</td>
<td>0.016 cm</td>
<td>2.405 cm</td>
<td>1.39°</td>
</tr>
</tbody>
</table>

*General Electric – Low energy, general purpose collimator
†Siemens – Low energy, high resolution collimator
Jaszczak Cold Sphere Phantom: Noisy Collimated Projection Data

Contrast in each cold sphere (radius) for noisy GE-LEGP (1.83°) projection data

Contrast in each cold sphere (radius) for noisy SE-LEHR (1.39°) projection data
Jaszczak Cold Sphere Phantom: Noisy Collimated Projection Data

Reconstruction of noisy GE-LEGP data

Reconstruction of noisy SE-LEHR data
Comparison of TITAN-IR with Other Methods Based on Jaszczak Phantom:

• Filtered backprojection (FBP)
 • Traditional standard for image reconstruction
 • Implemented in MATLAB and includes the Chang attenuation correction*

• ML-EM with System Matrix (SM) only
 • Standard ML-EM reconstruction method
 • Algorithm written in Fortran 90
 • Uses the same system matrix that TITAN-IR uses for backprojection

Comparison of Methods with Jaszczak Phantom

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Noiseless, no collimator blur</th>
<th>Noisy, no collimator blur</th>
<th>Noisy GE-LEGP</th>
<th>Noisy SE-LEHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML-EM with SM only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TITAN-IR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Methods with Jaszczak Phantom

- Contrast in reconstruction of noiseless projection data with no collimator blur
Comparison of Methods with Jaszczak Phantom

- Contrast in reconstruction of noisy projection data with no collimator blur
Comparison of Methods with Jaszczak Phantom

- Contrast in reconstruction of noisy GE-LEGP projection data
Comparison of Methods with Jaszczak Phantom

- Contrast in reconstruction of noisy SE-LEHR projection data

![Graph showing contrast in reconstruction of noisy SE-LEHR projection data for different sphere sizes and methods.](image-url)
Comparison of Methods with Jaszczak Phantom

Noisy GE–LEGp Data Row 19

Noisy GE–LEGp Data Row 46

Source Strength vs. Phantom Voxel
Comparison of Methods with Jaszczak Phantom
Computation Time

• To be viable for use in a clinical setting, as well as useful to researchers, computation time must be “reasonable”

• All calculations on a dedicated computer cluster:
 • Intel Xeon E5 2.6 GHz processors
 • 16 GB per processor core
 • 16 processor cores per compute node
Computation Time

Jaszczak phantom: TITAN-IR computation time for coarse meshing, S_6, 64 iterations

<table>
<thead>
<tr>
<th>Processor Cores</th>
<th>Wall Clock Time (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>575.7</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>291.5</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>149.9</td>
<td>3.8</td>
</tr>
<tr>
<td>8</td>
<td>81.4</td>
<td>7.1</td>
</tr>
<tr>
<td>16</td>
<td>36.8</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Noiseless projection data with no collimator blur

<table>
<thead>
<tr>
<th>Processor Cores</th>
<th>Wall Clock Time (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1665.7</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>905.1</td>
<td>1.8</td>
</tr>
<tr>
<td>4</td>
<td>524.3</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>341.4</td>
<td>4.9</td>
</tr>
<tr>
<td>16</td>
<td>172.0</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Noisy GE-LEGP projection data
Conclusion

MRT methodology allows for development of real-time tools for analysis of nuclear systems
Thanks!

Questions?