# MRT Methodologies for Application to Nuclear Safeguards, Safety and Security

Prof. Alireza Haghighat Virginia Tech

Virginia Tech Transport Theory Group (VT<sup>3</sup>G)

Director of Nuclear Engineering and Science Lab (NSEL) at Arlington Nuclear Engineering Program, Mechanical Engineering Department



**Energy Seminar Series** 





### **Nuclear Science and Engineering Lab (NSEL) @ Arlington**

NSEL at Arlington Operates under auspices of ICTAS\* and Mechanical Engineering Department. It engages with various entities/organizations at Virginia Tech and beyond to address different applications including power, security, medicine, and policy (<a href="http://nsel.ncr.vt.edu">http://nsel.ncr.vt.edu</a>)



#### **Collaborations @ Virginia Tech**

| Virginia Tech                                                                                       | Activity                                        | Campus     |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|--|--|
| Physics Department                                                                                  | Neutrino Physics Center,<br>GEM*STAR initiative | Blacksburg |  |  |
| Nuclear Engineering Program                                                                         | Education & research                            | Blacksburg |  |  |
| Discovery Analytics Center                                                                          | Inference and detection                         | NCR        |  |  |
| Hume Center for national security                                                                   | Cyber security                                  | NCR        |  |  |
| School of Public and International Affairs (SPIA) & Department of Science and Technology in Society | Nuclear nonproliferation and policy             | NCR        |  |  |



<sup>\*</sup>Institute of Critical Technology and Applied Science

**Collaborations with other organizations** 

| Organization                                                 | Activity                                                                                                                                                                                                                                                                                                     | Location                                |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| US Naval Academy (USNA)                                      | <ul> <li>S Naval Academy (USNA)</li> <li>Signed a research and education partnership, Aug 2015</li> <li>Initiated benchmarking of the RAPID code system using USNA's subcritical facility (for nuclear safeguards)</li> <li>Discussing establishing a special graduate program for USNA graduates</li> </ul> |                                         |  |  |
| Naval Surface Warfare<br>Center, Carderock                   | Tandem linear accelerator research; small modular reactor use in military                                                                                                                                                                                                                                    | MD                                      |  |  |
| Federation of American<br>Scientist                          | Workforce on LEU nuclear fueled naval vessels                                                                                                                                                                                                                                                                | DC                                      |  |  |
| Georgia Tech (lead) with 10 other organizations including VT | Design of Integral Inherently Safe LWR reactor system design                                                                                                                                                                                                                                                 | Company - Georgia Tectr - Mr Maretinge. |  |  |
| George Washington University                                 | Nuclear education; GEM*STAR                                                                                                                                                                                                                                                                                  | I2SDEWR                                 |  |  |
| Oak Ridge National Lab                                       | GEM*STAR, spent fuel casks                                                                                                                                                                                                                                                                                   | Tennessee                               |  |  |
| Collaboration among NE, Physics & MSE                        | Safe, Secure, Sustainable Nuclear Power (S3NPower)                                                                                                                                                                                                                                                           | Blacksburg, ICTAS                       |  |  |





http://www.virginianuclear.org/

| Formation of VNEC nonprofit organization     |                                                                                                                                           |          |  |  |  |  |  |  |  |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|--|--|--|
| Organization                                 | Activities                                                                                                                                | Location |  |  |  |  |  |  |  |
| Virginia Nuclear Energy<br>Consortium (VNEC) | <ul> <li>Promotion of nuclear industry,<br/>education and research</li> </ul>                                                             | Virginia |  |  |  |  |  |  |  |
|                                              | <ul> <li>Membership include:         AREVA, B&amp;W, Dominion, GE,         Newport News Shipbuilding,         UVA, VCU, and VT</li> </ul> |          |  |  |  |  |  |  |  |
|                                              | <ul> <li>Prof. Haghighat is Chairman of<br/>the Board</li> </ul>                                                                          |          |  |  |  |  |  |  |  |

### NSEL – Organization of Workshops/Forums

| Year (date)           | Title                                                                                                                                                                                                                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2011<br>(Nov 7-11)    | 13 <sup>th</sup> International Workshop on Particle Transport Simulation of Nuclear Systems ( <a href="http://www.cpe.vt.edu/transport">http://www.cpe.vt.edu/transport</a> )                                                                                                                                            |
| 2012<br>(March 11-12) | Symposium on Low Power Critical Facilities (LPCF) in collaboration with SUNRISE* ( <a href="http://www.cpe.vt.edu/lpcf">http://www.cpe.vt.edu/lpcf</a> )                                                                                                                                                                 |
| 2012<br>(Nov 5)       | Forum on Nuclear Regimes: Future Outlooks; sponsors included AREVA, ICTAS, VT-NCR, and partners included Naval Postgraduate school, Federation of American Scientists, and George Washington's Elliot College of International Affairs ( <a href="http://www.ictas.vt.edu/nuclear">http://www.ictas.vt.edu/nuclear</a> ) |
| 2013<br>(Aug 7)       | Seminar on nuclear power & education for a group of international reporters (at the request of Department of State) ( <a href="http://nsel.ncr.vt.edu">http://nsel.ncr.vt.edu</a> )                                                                                                                                      |
| 2014<br>(July 20)     | a half-day workshop on "Advanced particle transport methodologies/tools for nuclear safeguards and non-proliferation," INMM 55 <sup>th</sup> Annual Meeting, Atlanta, Georgia. (In collaboration with Georgia Tech)                                                                                                      |
| 2014<br>(Sept 28)     | A half-day workshop on "Hybrid particle transport methods for solving complex problems in real-time," PHYSOR 2014 International Conference, Kyoto, Japan. (In collaboration with Georgia Tech)                                                                                                                           |
| 2014<br>(Dec 15-18)   | MRT Methodologies for Real-Time Simulation of Nuclear Safeguards & Nonproliferation Problems,' Modeling and Simulation for Safeguards and Nonproliferation <i>Workshop ORNL</i> .                                                                                                                                        |
| 2015<br>(June 23-25)  | 1 <sup>st</sup> Workshop on Methodologies for Spent Nuclear Fuel Pool Simulations (Safety and Safeguards) ( <a href="http://www.cpe.vt.edu/nuclear">http://www.cpe.vt.edu/nuclear</a> )                                                                                                                                  |

<sup>\*</sup>Southeast Universities Nuclear Reactors Institute for Science and Education



### **Particle Transport Theory**

### **Objective**

Determine the expected number of particles in a phase space ( $d^3rdEd\Omega$ ) at time t:

$$n(\vec{r}, E, \hat{\Omega}, t)d^3rdEd\Omega$$



Number density is used to determine <u>angular flux/current</u>, <u>scalar flux and current</u> <u>density</u>, <u>partial currents</u>, <u>and reaction rates</u>.



# Simulation Approaches

#### Deterministic Methods

 Solve the linear Boltzmann equation to obtain the expected flux in a phase space

#### Statistical Monte Carlo Methods

 Perform particle transport <u>experiments</u> using random numbers (RN's) on a computer to estimate average properties of a particle in phase space



### **Deterministic – Linear Boltzmann Equation**

### • Integro-differential form

streaming collision  $\hat{\Omega}.\nabla\Psi(\vec{r},E,\hat{\Omega}) + \sigma(\vec{r},E)\Psi(\vec{r},E,\hat{\Omega}) = \text{scattering}$   $\int_{0}^{\infty} dE' \int_{4\pi} d\Omega' \sigma_{s}(\vec{r},E' \to E,\hat{\Omega}' \to \hat{\Omega})\Psi(\vec{r},E',\hat{\Omega}) + \text{Independent source}$   $\frac{\chi(E)}{4\pi} \int_{0}^{\infty} dE' \int_{4\pi} d\Omega' \upsilon \sigma_{f}(\vec{r},E')\Psi(\vec{r},E',\hat{\Omega}) + S(\vec{r},E,\hat{\Omega})$ 

Integral form

$$\psi(\vec{r}, E, \hat{\Omega}) = \int_{0}^{R} d |\vec{r} - \vec{r'}| Q(r') e^{-\tau_{E}(\vec{r}, \vec{r'})} + \psi(\vec{r}_{s}, E, \hat{\Omega}) e^{-\tau_{E}(\vec{r}, \vec{r'})}$$



## Integro-differential - Solution Method

• Angular variable: Discrete Ordinates (Sn) method:

A discrete set of directions  $\{ \hat{\Omega}_m \}$  and associated weights  $\{ \mathbf{w_m} \}$  are selected

$$\hat{\Omega}_{m}.\nabla\Psi(\vec{r},E,\hat{\Omega}_{m}) + \sigma(\vec{r},E)\Psi(\vec{r},E,\hat{\Omega}_{m}) = q(\vec{r},E,\hat{\Omega}_{m})$$



### Spatial variable

Integrated over <u>fine meshes</u> using FD or FE methods

$$\Psi_{m,g,A} = \frac{\int d^3 r \Psi_{m,g}(\vec{r})}{\Delta V_{ijk}}$$



### Energy variable

Integrate over energy intervals to prepare multigroup cross sections,  $\sigma_{\!\scriptscriptstyle g}$ 



## Integral - Solution method

Method of Characteristic (MOC): Model is partitioned into coarse meshes and transport equation is solved along the characteristic paths (k) (parallel to each discrete ordinate (n)), filling the mesh, and averaged





$$\psi_{g,m,i,k}(t_{m,i,k}) = \psi_{g,m,i,k}(0) \exp(-\sigma_{g,i}t_{m,i,k}) + \frac{Q_{g,m,i}}{\sigma_{g,i}}(1 - \exp(-\sigma_{g,i}t_{m,i,k}))$$



### **Deterministic - Issues/Challenges/Needs**

- Robust <u>numerical</u> formulations (e.g., adaptive differencing strategy)
- Algorithms for improving <u>efficiency</u> (i.e., acceleration techniques
   synthetic formulations and pre-conditioners)
- Use of advanced computing <u>hardware & software</u> environments
- Pre- and post-processing tools
- > Multigroup cross section preparation
- > Benchmarking

Over the past 29 years, VT<sup>3</sup>G address all the above issues



### Monte Carlo Methods

 Perform an experiment on a computer; "exact" simulation of a physical process



#### <u>Issues</u>

- Precise expected values; i.e., small relative uncertainty,  $R_{\bar{x}} = \frac{\sigma_{\bar{x}}}{\bar{x}}$ , requiring large computation time
- > Therefore, Variance Reduction techniques are needed for real-world problems!
- > For eigenvalue problems, the source convergence is an added difficulty.



### Deterministic vs. Monte Carlo

| Item                             | Deterministic              | MC                      |
|----------------------------------|----------------------------|-------------------------|
| Geometry                         | Discrete/ Exact            | Exact                   |
| Energy treatment – cross section | Discrete                   | Exact                   |
| Direction                        | Discrete/ Truncated series | Exact                   |
| Input preparation                | Difficult                  | simple                  |
| Computer memory                  | Large                      | Small                   |
| Computer time                    | Small                      | Large                   |
| Numerical issues                 | Convergence                | Statistical uncertainty |
| Amount of information            | Large                      | Limited                 |
| Parallel computing               | Complex                    | Trivial                 |



# Why not MC only?

- Because of the difficulty in obtaining detail information with reliable statistical uncertainty in a reasonable time; examples are:
  - Real-time simulations
  - Obtaining energy-dependent flux distributions,
  - Time-dependent simulations,
  - Sensitivity analysis,
  - Determination of uncertainties



### Why not use advanced hardware?

- ➤ VT³G has developed vector and parallel algorithms:
  - Developed two large codes: PENTRAN (1996) and TITAN (2004)

### Why not use hybrid methods?

- Deterministic-deterministic (differencing schemes, different numerical formulations, generation of multigroup cross sections, generation of angular quadratures, acceleration techniques)
  - VT<sup>3</sup>G has developed various algorithms; a few have been implemented in PENTRAN and TITAN
- Monte Carlo-deterministic (variance reduction with the of use deterministic adjoint)
  - VT³G has developed CADIS, A³MCNP in 1997; CADIS has become popular recently!



### Remarks

 Particle transport-based methodologies are need for real-time simulation

 Even 'Fast' particle transport codes, with parallel and hybrid algorithms, are slow because of large number of unknowns



# Development of Transport Formulations for Real-Time Applications

- Physics-Based transport methodologies are needed:
- Developed Multi-stage, Response-function Transport (MRT) methodology
  - Based on problem physics partition a problem into stages (subproblems),
  - For each stage employ response method and/or adjoint function methodology
  - Pre-calculate response-function or adjoint-function using an accurate and fast transport code
  - Solve a linear system of equations to couple all the stages



### Examples for MRT Algorithms

- Nondestructive testing: Optimization of the Westinghouse's PGNNA active interrogation system for detection of RCRA (Resource Conversation and Recovery Act) (e.g., lead, mercury, cadmium) in waste drums (partial implementation of MRT; 1999)
- Nuclear Safeguards: Monitoring of spent fuel pools for detection of fuel diversion (2007) (funded by LLNL)
- **Nuclear nonproliferation:** Active interrogation of cargo containers for simulation of special nuclear materials (SNMs) (2013) (in collaboration with GaTech)
- **Spent fuel safety and security:** Real-time simulation of spent fuel pools for determination of eigenvalue, subcritical multiplication, and material identification (partly funded by I<sup>2</sup>S project, led by GaTech) (Ongoing)
- Image reconstruction for SPECT (Single Photon Emission Computed
   Tomography): Real-time simulation of an SPECT device for generation of project
   images using an MRT methodology and Maximum Likelihood Estimation
   Maximization (MLEM) (filed for a patent, June 2015)



### Nuclear Safeguards - Inspection of spent nuclear fuel pool

- Goal: Develop accurate and fast hybrid methodology and tool for inspection of spent fuel pool; funded by LLNL
- Approach: Use measurement and <u>on-line</u> computation to obtain trending curves

### Atucha-1 Spent fuel pool





### Issues

- Develop a fast and accurate computation tool which can estimate the detector response for various combinations of
  - **>** Burnup
  - ➤ Cooling time
  - ➤ Pool lattice arrangement
  - > Fuel type (enrichment)



## MRT Methodology

Online Calculation of <u>detector response</u> (R):

Neutron source

$$R_n = \langle S_n \phi_n^+ \rangle$$

Adjoint (Importance) function

- Source (S = S<sub>intrinsic</sub> + S<sub>subcritical-Multiplication</sub>)
  - Stage 1 Intrinsic Source
    - Spontaneous fission & (α, n) from fuel burnup calculation (ORIGEN-ARP)

(Created a database)



- Stage 2 Subcritical Multiplication (Hybrid method)
  - Simplified fission-matrix (FM) method
  - Use MCNP Monte Carlo to obtain  $a_{i,j}$  for each pool type

(Created a database for coef. a<sub>ii</sub>)

$$F_i = \sum_{i=1}^{N} a_{i,j} (F_j + S_j^{\text{int.}})$$

- Adjoint function
  - Stage 3 Is obtained using the PENTRAN transport code (Created a database for multigroup adjoint for different lattice sizes)



## Adjoint Function Methodology

"Forward" Transport Equation

$$H \psi = q$$
 in V 
$$\psi = 0$$
 on  $\Gamma$  for  $\hat{n} \cdot \hat{\Omega} < 0$ 

where

$$H = \hat{\Omega} \cdot \nabla + \sigma_t(\vec{r}, E) - \int_0^\infty dE' \int_{4\pi} d\Omega' \sigma_s(\vec{r}, E' \to E, \hat{\Omega}' \to \hat{\Omega})$$

"Adjoint" Transport Equation

$$H^+\psi^+ = q^+ \quad \text{in V}$$

$$\psi^+ = 0 \quad \text{on } \Gamma \text{ for } \hat{n} \cdot \hat{\Omega} > 0$$

where

$$H^{+} = -\hat{\Omega} \cdot \nabla + \sigma_{t}(\vec{r}, E) - \int_{0}^{\infty} dE' \int_{4\pi} d\Omega' \sigma_{s}(\vec{r}, E \to E', \hat{\Omega} \to \hat{\Omega}')$$



### Adjoint function methodology – Detector response

Forward approach 
$$R = \langle \sigma_d \psi \rangle = \int_{V_d} dV \int_0^\infty dE \int_{4\pi} d\Omega \ \sigma_d(\vec{r}, E) \psi(\vec{r}, E, \hat{\Omega})$$

 The "commutation relation" between the "forward" and "adjoint" transport equations

$$\left\langle \psi^{+} H \psi \right\rangle - \left\langle \psi H^{+} \psi^{+} \right\rangle = \left\langle \psi^{+} q \right\rangle - \left\langle \psi q^{+} \right\rangle$$

Then,

$$\left\langle \psi q^{\scriptscriptstyle +} \right\rangle = \left\langle \psi^{\scriptscriptstyle +} q \right\rangle$$

• If we consider  $q^+ = \sigma_d$ 

$$R = \left\langle \psi^+ \, q \right\rangle$$



### **Demonstration**

#### **Standard**

$$R = <\sigma_d \phi >$$
 Where,  $H\phi = S$ 



### **Adjoint Methodology**

$$R = \langle S\phi^+ \rangle$$

Where, 
$$H^{\scriptscriptstyle +}\phi^{\scriptscriptstyle +}=\sigma_d^{}$$



# Derivation of Fission Matrix (FM) Formulation

Eigenvalue formulation in operator form is expressed by

$$H\psi(\bar{p}) = \frac{1}{k}F\psi(\bar{p})$$

Where,

$$\begin{split} \bar{p} &= (\bar{r}, E, \widehat{\Omega}) \\ H &= \widehat{\Omega} \cdot \nabla + \sigma_t(\bar{r}, E) - \int_0^\infty dE' \int_{4\pi} d\Omega' \, \sigma_s(\bar{r}, E' \to E, \mu_0) \end{split}$$

$$F = \frac{\chi(E)}{4\pi} \int_0^\infty dE' \int_{4\pi} d\Omega' \, \nu \sigma_f(\bar{r}, E')$$

# FM Derivation (cont)

We may rewrite above equation as

$$S(\bar{p}) = \frac{1}{k} A S(\bar{p})$$

Where,

$$S = \tilde{F}\psi$$
,  $A = \tilde{F}H^{-1}\chi$ , &  $\tilde{F} = \frac{1}{4\pi} \int_0^\infty dE' \int_{4\pi} d\Omega' \nu \sigma_f(\bar{r}, E')$ 



# Fission Matrix (FM) Formulation

#### Eigenvalue

$$F_i = \frac{1}{k} \sum_{j=1}^{N} a_{i,j} F_j$$



- *k* is eigenvalue
- $F_i$  is fission source,  $S_i$  is fixed source in cell j
- $a_{i,j}$  is the number of fission neutrons produced in cell *i* due to a fission neutron porn in cent *j*.

#### • Subcritical multiplication

$$F_i = \sum_{j=1}^{N} (a_{i,j}F_j + b_{i,j}S_j^{Intrinsic}),$$

$$M = \frac{\sum_{j=1}^{N} (F_j + S_j^{intrinsic})}{\sum_{j=1}^{N} S_j^{intrinsic}}$$

•  $b_{i,j}$  is the number of fission neutrons produced in cell i due to a source neutron born in cell j.



### Fission Matrix Coefficients – Inspection of Pool

• For this safeguards application, we have demonstrated that within the expected tolerance, the  $b_{i,j}$  coefficients are equivalent to  $a_{i,j}$ , therefore, subcritical multiplication fission density is expressed by

$$F_{i} = \sum_{i=1}^{N} a_{i,j} (F_{j} + S_{j})$$

• Further, we have demonstrated that again within the tolerance, we need only three sets of coefficients depending on the position of assemblies, i.e., corner, edge, and interior





### Calculation of FM coefficients



| Fission Matrix Coefficients |                                 |          |          |  |  |  |  |  |  |
|-----------------------------|---------------------------------|----------|----------|--|--|--|--|--|--|
|                             | x-distance from source assembly |          |          |  |  |  |  |  |  |
| y-distance                  | 0 1 2                           |          |          |  |  |  |  |  |  |
| 0                           | 2.13E-01                        | 4.98E-02 | 2.70E-03 |  |  |  |  |  |  |
| 1                           | 4.56E-02                        | 1.38E-02 | 1.22E-03 |  |  |  |  |  |  |
| 2                           | 2.18E-03                        | 1.11E-03 |          |  |  |  |  |  |  |

Coefficients for corner, edge and interior assemblies are within 1%

Hence, this finding reduces the necessary calculations to only one assembly location for different burnups and cooling time



### Testing the Simplified FM Methodology

Four test spent fuel scenarios

• 2x6 array, uniform source

1.

9x6 array, uniform source



 9x6 array, 27 assemblies on the left with source strength 1, the rest with source strength 0.5



• 20x6 array, uniform source



# FM Testing Results

- Excellent agreement with Monte Carlo (<1%)</li>
- Very fast
  - <1s for Fission-matrix method</li>
  - ~1hr for Monte Carlo

| Assembly<br>Arrangement<br>Case | M<br>(MCNP) | M<br>(Fission Matrix) | Difference | MCNP<br>Uncertainty<br>1-σ |
|---------------------------------|-------------|-----------------------|------------|----------------------------|
| 2x6, uniform                    | 1.7133      | 1.7104                | -0. 29%    | 8000.0                     |
| 9x6, uniform                    | 1.9988      | 1.9966                | -0. 22%    | 0.0007                     |
| 9x6, non-uniform                | 2.0033      | 1.9968                | -0.65%     | 0.0013                     |
| 20x6, uniform                   | 2.0513      | 2.0444                | -0. 69%    | 0.0012                     |

## **Detector FOV**

$$FR_i = \frac{\sum_{g} \psi_{ig}^* S_{ig} V_i}{\sum_{j} \sum_{g} \psi_{jg}^* S_{jg} V_j}$$



Fission Chamber (94 w% U-235)



### **INSPCT-S**

(Inspection of Nuclear Spent fuel-Pool Computing Tool —Spreadsheet)

**INSPCT-S solves** 

$$R_n = \langle S_n \phi_n^+ \rangle$$

| PUT   |              |          |               |             |              |                |               |              |                   | OUTPUT       |            |              |          |          |          |          |          |          |     |
|-------|--------------|----------|---------------|-------------|--------------|----------------|---------------|--------------|-------------------|--------------|------------|--------------|----------|----------|----------|----------|----------|----------|-----|
| UI.   |              |          | src file      | C:\Llsers\: | ali\Documer  | nts/haghD\u    | iftta\LLNL\I  | NSPCT-s\se.d | erc               | 0011 01      |            |              |          |          |          |          |          |          |     |
|       | COLUMNS      | ۶        | fm file       |             |              |                |               |              | esponse Tolerance |              | Detector N | lormalizatio | n        |          |          |          |          |          |     |
|       | ROWS         |          | imp file      |             |              | U              | 0             | NSPCT-s\se   |                   |              | 5.28E-10   |              |          | run      |          |          |          |          |     |
|       | nome         |          | imp iiio      | 0.10001010  | an (Boodinoi | ito inagrib ia | integration ( | 101 01 010   | 10.0070           |              | O.EGE 10   |              |          |          |          |          |          |          |     |
|       | Burnup       |          |               |             |              |                |               |              |                   |              | Independe  | nt Source    |          |          |          |          |          |          |     |
| (x,y) | . 1          | 2        | 2 :           | 3 4         | . 5          | 6              | 7             | 7 8          |                   | (x,y)        | . 1        | 2            | 3        | 4        | 5        | 6        | 7        | 8        |     |
| 1     | 9000         | 9000     | 9000          | 9000        | 9000         | 9000           | 9000          | 9000         |                   |              |            | 3.39E+07     | 2.84E+07 | 2.48E+07 | 2.21E+07 | 1.94E+07 | 1.56E+07 | 13036948 |     |
| 2     | 10000        | 10000    | 10000         | 10000       | 10000        | 10000          | 10000         | 10000        |                   | 2            | 6.89E+07   | 5.30E+07     | 4.49E+07 | 3.86E+07 | 3.39E+07 | 2.91E+07 | 2.26E+07 | 18101692 |     |
| 3     | 11000        | 11000    | 11000         | 11000       | 11000        | 11000          | 11000         | 11000        |                   | 3            | 1.00E+08   | 8.04E+07     | 6.86E+07 | 5.84E+07 | 5.06E+07 | 4.29E+07 | 3.23E+07 | 25047256 |     |
| 4     | 12000        | 12000    | 12000         | 12000       | 12000        | 12000          | 12000         | 12000        |                   | 4            | 1.42E+08   | 1.17E+08     | 1.01E+08 | 8.51E+07 | 7.33E+07 | 6.15E+07 | 4.53E+07 | 34204842 |     |
| 5     | 13000        | 13000    | 13000         | 13000       | 13000        | 13000          | 13000         | 13000        |                   | 5            | 1.98E+08   | 1.67E+08     | 1.45E+08 | 1.22E+08 | 1.04E+08 | 8.67E+07 | 6.28E+07 | 46492994 |     |
| 6     | 14000        | 14000    | 14000         | 14000       | 14000        | 14000          | 14000         | 14000        |                   | 6            | 2.68E+08   | 2.32E+08     | 2.01E+08 | 1.69E+08 | 1.44E+08 | 1.19E+08 | 8.52E+07 | 62072007 |     |
|       |              |          |               |             |              |                |               |              |                   |              |            |              |          |          |          |          |          |          |     |
| , ,   | Cooling time |          |               |             | _            |                |               |              |                   | <b>.</b> , . | Fission Sc |              |          |          | _        |          | _        | _        |     |
| (x,y) | 1            | 2        |               | 3 4         |              | -              |               | 8            |                   | (x,y)        |            | _            |          |          | _        |          | 7        | 8        |     |
| 1     | 1            |          |               | 5 10        |              |                |               |              |                   |              |            | 4.68E+07     |          |          |          |          |          |          |     |
| 2     | . 1          | 2        |               | 5 10        |              |                |               |              |                   |              |            | 8.12E+07     |          |          |          |          |          |          |     |
| 3     | . 1          | 2        |               | 5 10        |              |                |               |              |                   |              |            | 1.17E+08     |          |          |          |          |          |          |     |
| 4     | . 1          | 2        |               | 5 10        |              |                |               |              |                   |              |            | 1.58E+08     |          |          |          |          |          |          |     |
| 5     |              | 2        |               | 5 10        |              |                |               |              |                   |              |            | 1.92E+08     |          |          |          |          |          |          |     |
| 6     |              | 2        | 2 ;           | 5 10        | 15           | 20             | 30            | 40           |                   | ь            | 1.49E+08   | 1.74E+08     | 1.56E+08 | 1.30=+08 | 1.06=+08 | 8.38E+U/ | 6.03E+07 | 36229288 |     |
|       | Response (e  | ovnorima | ntal)         |             |              |                |               |              |                   |              | Rasnonsa   | (Calculated) |          |          |          |          |          |          |     |
| (x,y) |              | 1.5      |               | 5 3.5       | 4.5          | 5.5            | 6.5           | 7.5          | 8.5               | (x,y)        | -          | . ,          | 2.5      | 3.5      | 4.5      | 5.5      | 6.5      | 7.5      | 8.5 |
| 0.5   | 0.0          | 1.0      | , <u>L.</u> , | J 0.0       | 7.0          | 0.0            | 0.0           | 7.0          | 0.0               |              |            | 0.230998     |          |          |          |          |          |          |     |
| 1.5   |              | 0.6      | :             |             |              | 0.3            |               |              |                   |              |            | 0.580498     |          |          |          |          |          |          |     |
| 2.5   | · ·          | <u> </u> | •             | 0.8         |              | 0.0            |               |              |                   |              |            | 0.897903     |          |          |          |          |          |          |     |
| 3.5   |              |          |               |             |              |                |               |              |                   |              | 0.658686   |              |          |          |          | 0.761393 |          |          |     |
| 4.5   |              |          |               | 1.4         |              |                |               |              |                   |              | 0.879337   |              |          |          |          | 1.002015 |          |          |     |
| 5.5   |              |          |               |             | <u>.</u>     | 1.2            |               |              |                   | 5.5          | 1.029258   |              |          |          |          | 1.14574  |          |          |     |
| 6.5   |              |          |               |             |              |                |               |              |                   | 6.5          | 0.57336    | 1.093457     |          |          |          |          |          |          |     |
|       |              |          |               |             |              |                |               |              |                   |              |            |              |          |          |          |          |          |          |     |
|       |              |          |               |             |              |                |               |              |                   |              | Response   | Difference   |          |          |          |          |          |          |     |
|       |              |          |               |             |              |                |               |              |                   | (x,y)        | 0.5        | 1.5          | 2.5      | 3.5      | 4.5      | 5.5      | 6.5      | 7.5      | 8.5 |
|       |              |          |               |             |              |                |               |              |                   | 0.5          |            |              |          |          |          |          |          |          |     |
|       |              |          |               |             |              |                |               |              |                   | 1.5          |            | 3.36%        |          |          |          | -15.25%  |          |          |     |
|       |              |          |               |             |              |                |               |              |                   | 2.5          |            |              |          | 3.82%    |          |          |          |          |     |
|       |              |          |               |             |              |                |               |              |                   | 3.5          |            |              |          |          |          |          |          |          |     |
|       |              |          |               |             |              |                |               |              |                   | 4.5          |            |              |          | -3.65%   |          |          |          |          |     |
|       |              |          |               |             |              |                |               |              |                   | 5.5          |            |              |          |          |          | 4.74%    |          |          |     |
|       |              |          |               |             |              |                |               |              |                   | 6.5          |            |              |          |          |          |          |          |          |     |
|       |              |          |               |             |              |                |               |              |                   |              |            |              |          |          |          |          |          |          | 2.4 |

# Real-time simulations of commercial spent fuel pools

Criticality Safety, Nonproliferation & Safeguards applications





# Background

- Standard approach Full Monte Carlo calculations face difficulties in this area
  - Convergence is difficult due to low coupling between regions (due to absorbers)
    - Convergence can also be difficult to detect
  - Computation times are very long, especially to get detailed information
  - Changing pool configuration requires complete recalculation
- Fission Matrix (FM) approach It can address the above issues
  - Fission matrix coefficients are pre-calculated using Monte Carlo
  - Computation times are much shorter, with no convergence issues
  - Detailed fission distributions are obtained at pin level
  - Changing pool assembly configuration does not require new precalculations (No additional Monte Carlo)



# Developed a Multi-stage methodology for determination of FM coefficients

- As the computational size (for I<sup>2</sup>S reactor design)
  - $N = 9 \times 9 \times 336 = 27,216$  total fuel pins/ fission matrix cells
  - Considering 24 axial segments per rod, then
    - N = 653,184
- Standard FM would require N = 653,184 separate fixed-source calculations to determine the coefficient matrix
  - A matrix of size N x N = 4.26649E+11 total coefficients (> 3.4 TB of memory is needed)
- The standard approach is clearly NOT feasible
- We have developed a multi-stage approach to obtain detailed FM coefficients (in the process of filing for a patent)

9x9 array of assemblies in a pool





Assembly with 19x19 lattice; 25 positions are reserved for control rods



## RAPID tool

- Developed the RAPID (Real-time Analysis spent fuel Pool *In situ* Detection) tool for determination of
  - Eigenvalue
  - Subcritical multiplication
  - Pin-wise, axially-depdendent fission density
- With application to
  - Criticality safety
  - Safeguards
  - Nonproliferation and materials accountability



# RAPID code system - Structure

### Pre-Calculation (one time):

- 1. Burnup Calculation to obtain material composition
- 2. Fission Matrix Coefficient Generation

### Real-time Analysis:

- 1. Run Fission Matrix Code
- 2. Process Results



# Test Problems (9x9 assemblies)





# Case 3 Eigenfunction



#### **Reference Solution**



#### Comparison of RAPID with MC



# Case 11 Eigenfunction



**Reference Solution** 



#### Comparison with RAPID with MC



# Case 4 Eigenfunction distribution



**Reference Solution** 



#### Comparison with RAPID with MC



# Comparison of calculated M - RAPID vs. MCNP

| Case | FIV      | 1             |         | MCNF          |                    | Error in M      | Speedup          |
|------|----------|---------------|---------|---------------|--------------------|-----------------|------------------|
|      | M        | Time<br>(min) | M       | Time<br>(min) | 1-σ<br>Uncertainty | (FM vs<br>MCNP) | (FM vs<br>MCNP)* |
| 1x1  | 3.343353 | 0.092         | 3.33155 | 925           | 0.0010             | 0.35%           | 10062            |
| 6x1  | 4.328244 | 0.213         | 4.31336 | 1198          | 0.0010             | 0.35%           | 5613             |
| 3x3  | 5.428051 | 0.965         | 5.40992 | 1502          | 0.0011             | 0.35%           | 1558             |
| 9x9  | 6.697940 | 8.17          | 6.67674 | 1928          | 0.012              | 0.32%           | 236              |

<sup>\*</sup>Note that the *RAPID* also provide pin-wise, axial-dependent fission source or power.



# **3-D Fission Density**

#### Y-LEVEL ANIMATION



#### **Z-LEVEL ANIMATION**





## Conclusion

MRT methodology allows for development of real-time tools for analysis of nuclear systems



# Thanks!

Questions?

Monte Carlo Methods for Particle Transport Alireza Haghighat CRC Press

