Benchmarking of the RAPID Tool for a Subcritical Facility

Nathan Roskoff and Alireza Haghighat Virginia Tech Arlington,VA & Marshall Millett and Joe Leidig US Naval Academy Annapolis, MD

For Presentation at the INMM, Annual Meeting July 24-28, 2016

http://nsel.ncr.vt.edu

OUTLINE

- Purpose
- RAPID tool
 - Theory
 - Capability
- USNA Subcritical (USNA-SC) facility
- Benchmarking of RAPID vs MCNP & USNA-SC facility
- Concluding Remarks

PURPOSE

- The goal of this project is to perform *experimental* benchmark studies for further validation of the RAPID (Real-time Analysis Particle-transport In-situ Detection) code system:
 - Experimental facility the USNA subcritical (USNA-SC)

VT³G – Path to real-time simulation of nuclear systems (power, security & medicine)

Year	Methodology	Computer code system	Wall clock time	Former students
2016	MRT*	RAPID**		Dr. Walters
2015	MRT	TITAN-IR	2 2	Dr. Royston
2013	MRT	AIMS	Contraction of the second s	Drs. Royston and Walters
2009	MRT	INSPCTs	S	Dr. Walters
2007	Hybrid MC-det. (AVR)	ADIES (e ⁻)		Dr. Dionne
2005	Hybrid det. – det.	TITAN (n, Υ)	5	Dr.Yi
1997	Hybrid MC-det. (automated VR - AVR)	A ³ MCNP (n, Υ)***	Dours Sun	Dr. Wagner
1996	Parallel (3-D)	PENTRAN (n, Υ)		Dr. Sjoden
1992	Vector & parallel (2-D)		5 5	Drs. Hunter, Mattis & Petrovic
1989	Parallel processing (I-D)		Concertainty of the second	
1986	Vector processing (I-D)			

*Haghighat, K. Royston, and W. Walters, "MRT methods for real-time simulation of nonproliferation problems," Annals of Nuclear Energy, Vol. 87, Part 1, pp 61-67, April 2016. **W. Walters, N. Roskoff and A. Haghighat, "Use of the Fission Matrix Method for Solution of the Eigenvalue Problem in a Spent Fuel Pool" Proc. PHYSOR 2014, Kyoto, Japan, Sep. 28-Oct 3, 2014

*** Haghighat, A. and J.C. Wagner, "Monte Carlo Variance Reduction with Deterministic Importance Functions," Progress of Nuclear Energy Journal, Vol. 42 (1), Jan. 2003.

RAPID (Real-time Analysis Particle-transport In-situ Detection) (Wlaters, Haghighat, & Roskoff, 2015)

- The RAPID code system is developed based on the MRT (Multi-stage Response-function Transport) methodology; the MRT methodology is described as follows:
 - Partition a problem into stages
 - Represent each stage by a response function or set of response coefficients
 - Pre-calculate response functions and/or coefficients (one time)
 - Couple stages through a set of linear system of equations
 - Solve the linear system of equations iteratively in real-time

Currently, RAPID is used for <u>criticality safety and safeguards</u> of spent nuclear fuel (SNF) pools and casks.

RAPID – Formulation & Algorithm

- RAPID uses the Fission Matrix (FM) approach:
 - Eigenvalue formulation

- *k* is eigenvalue
- S_j is fission source
- $a_{i,j}$ is the number of fission neutrons produced in cell *i* due to a fission neutron born in cell *j*.
- Subcritical multiplication formulation

$$S_i = \sum_{j=1}^{N} (a_{i,j}S_j + b_{i,j}S_j^{intrinsic})$$

 $b_{i,j}$ is the number of fission neutrons produced in cell *i* due to a source neutron born in cell *j*.

FM Coefficients Determination - a Multi-stage approach

Brute force approach:

- For a typical <u>spent nuclear fuel pool</u> with a sub-region of 9x9 assemblies:
 - $N = 9 \times 9 \times 264 = 21,384$ total fuel pins/ fission matrix cells
 - Considering 24 axial segments per rod, then
 - *N* = 513,216
- Standard FM would require N = 513,216 separate fixed-source calculations to determine the coefficient matrix
 - A matrix of size N x N = 2.63391E+11 total coefficients (> 2 TB of memory is needed)
- The straightforward approach is clearly NOT feasible

Multi-stage, regional approach:

we have developed a multi-stage approach to obtain detailed FM coefficients (in the process of filing for a patent)

9x9 array of assemblies in a pool

RAPID Code System - Structure

Pre-Calculation (one time):

- I. Burnup Calculation to obtain material composition (ORNL-SCALE6 is used)
- 2. Fission Matrix Coefficient Generation (LANL-MCNP is used)

Real-time Analysis:

- I. Run Fission Matrix Code to determine
 - > Eigenvalue, subcritical multiplication, and axial-dependent, pin-wise fission density
- 2. Process Results and multi-dimensional graphs (in jpeg format)

Benchmarking of RAPID PHASE I

Benchmark facility - US Naval academy Subcritical (USNA-SC)

- A cylindrical pool with natural uranium (fuel) and light water (moderator)
- There are a total of 268 fuel rods, arranged in a hexagonal lattice
- Fuel: hollow aluminum tubes containing 5 annular fuel slugs
- Neutron source: PuBe—

Determination of the PuBe Source Spectrum

 SOURCES-4C code (Wilson, 2002) has been used to calculate the PuBe neutron source (from DOE 3031 standard) spectrum.

$$E_{MP} \cong 3.1 \text{ MeV}$$
$$\overline{E} = 4.8 \text{ MeV}$$
$$S = 2.32 \times 10^6 \frac{\#}{s - cm^3}$$

Subcritical

≻flux

Spatial mesh size (1.22 x1.22x1.58 cm³)

>49-group structure (next slide from SCALE)

Criticality

➢ Eigenvalue

Fission density [41-axial node (1" segment) & pin-wise]

49-group structure (SCALE6.1 package) for tallying

Group	Upper Energy (MeV)	Group	Upper Energy (MeV)	Group	Upper Energy (MeV)
	2.0000E+01	17	I.0000E-04	33	3.7500E-07
2	8.1873E+00	18	3.0000E-05	34	3.5000E-07
3	6.4340E+00	19	1.0000E-05	35	3.2500E-07
4	4.8000E+00	20	8.0000E-06	36	2.7500E-07
5	3.0000E+00	21	6.0000E-06	37	2.5000E-07
6	2.4790E+00	22	4.7500E-06	38	2.2500E-07
7	2.3540E+00	23	3.0000E-06	39	2.0000E-07
8	1.8500E+00	24	I.7700E-06	40	I.5000E-07
9	I.4000E+00	25	1.5000E-06	41	I.0000E-07
10	9.0000E-01	26	1.2500E-06	42	7.0000E-08
11	4.0000E-01	27	1.1500E-06	43	5.0000E-08
12	1.0000E-01	28	1.1000E-06	44	4.0000E-08
13	2.5000E-02	29	1.0500E-06	45	3.0000E-08
14	I.7000E-02	30	I.0000E-06	46	2.5300E-08
15	3.0000E-03	31	6.2500E-07	47	I.0000E-08
16	5.5000E-04	32	4.0000E-07	49	7.0000E-09

Fast Resonance Thermal

Monte-Carlo MCNP subcritical calculations

1-

WHOLE CORE : NEUTRON FLUX DISTRIBUTION

(Fast: 1-12; Resonance: 13-22 & Thermal: 23-49)

WHOLE CORE : RELATIVE UNCERTAINTIES OF NEUTRON FLUX

(Fast: 1-12; Resonance: 13-22 & Thermal: 23-49)

EXPERIMENTS

- Count rate in a ³He proportional counter was measured by placing the counter within the annulus of each fuel pin
- Neutron counts are determined in fuel pins along three radial profiles (11, 12, & 13) shown in the figure.

Comparison of reaction rates (Counts) of ³He detector [experiment vs calculation]

Estimated Detector Efficiency based on least-squares minimization

$$\mathsf{Eff} = \frac{\sum_i c_i m_i}{\sum_i c_i^2}$$

Where,

 m_i = Measured response at position *i* c_i = Calculated response at position *i*

$f = \frac{C}{m}$ (Ratio of calculated to measured responses)

COMPARISON WITH RAPID

EIGENVALUE CALCULATION

Comparison of Eigenvalues

Code	K-eff	Relative difference (pcm)
MCNP	0. 87278 (±3.5 pcm)	-
RAPID	0.87289	12

Computation Time

Code	# Processors	Time (min)	Speedup
MCNP	8	819.5 (over 13 hours)	-
RAPID	1	0.22 (about 13 seconds)	3774

Conclusions

- Using the USNA-SC facility, we have demonstrated that the measured and calculated ³He detector responses along three radial profiles are within ±10.
- RAPID results are in excellent agreement with the MCNP predictions:
 - Eigenvalue
 - Eigenfunction Detailed axial-dependent, pin-wise fission density (10,988 tallies)
- RAPID can solve for eigenvalue and a detail fission density distribution in real time (< 1 min!)</p>

Ongoing & Future Studies

- Performing subcritical multiplication calculation using RAPID
- Determining the FM coefficients with further spatial detail
- Performing further experimentation
 - In-core experiments using a BF₃ detector
 - Ex-core experiments using a larger ³He detector
 - Axial-dependent measurements using BF₃ & ³He detectors
- Will prepare benchmark problems for both critical and subcritical reactor systems

QUESTIONS?

THANKS

Appendix – Relative uncertainty in the MCNP fission density

