
TITAN Deterministic SPECT Simulation

- The collimator in SPECT poses a challenge for deterministic modeling:
 - Spatial discretization
 - Angular discretization

- Typical dimensions include:
 - Hole diameter ~0.18 cm
 - Septa thickness ~0.02 cm
 - Length ~3.3 cm
 - Acceptance Angle ~1.6°

Determination of the *importance function* (ψ^*)

- The TITAN multigroup, parallel hybrid transport code system
- TITAN was developed by Yi and Haghighat in 2006. It is a hybrid deterministic code by partitioning the problem domain into coarse meshes and allowing the use of different transport solvers within each coarse mesh.
- TITAN is written in F90 with some features from F2003 (object oriented23), and uses MPI for parallel processing
- The current version of TITAN allows for the following solvers:
 - 1) Discrete Ordinates (S_N) Solver
 - 2) Characteristics Method (CM) Solver
 - 3) Simplified ray-tracing with fictitious quadrature set

*C. Yi and A. Haghighat, "A 3-D Block-Oriented Hybrid Discrete Ordinates and Characteristics Method," *Nuclear Science and Engineering*, **164**, pp. 221-247 (2010).

4-Stage TITAN Hybrid formulation for SPECT simulation Stage 1 Stage 4 Stage 2 Stage 1- Sn Stage 3 calculation in phantom Scattering not S_N Solver Phantom simulated Stage 2 – Selection of fictitious angular quadrature & Detector: (Not simulated) Circular OS (COS) directions Stage 3 – Sn with fictitious quadrature Stage 4 – ray tracing

Fictitious quadrature directions

Example of Benchmarking TITAN Projection Images

SIMIND Comparison

NURBS-based cardiac-torso (NCAT) phantom with Tc-99m (140 keV)

SIMIND generated projection images

Right lateral

TITAN generated projection images

Left lateral

Right lateral

Number of Projection Images	1	4	8	45	90
SIMIND Time (sec)	17	67	140	754	1508
TITAN Time (sec)	200	202	212	274	352

Times are for a single processor

Image Reconstruction

- Filtered backprojection (FBP) (Cormack 1963)
 - Analytic image reconstruction
 - Traditional standard for reconstruction due to speed and simplicity
 - Issues: filter choice, amplification of high-freq. noise, streak artifacts, cannot incorporate system details
- Algebraic reconstruction technique (ART) (Gordon *et al.* 1970)
 - Iterative constraint-based reconstruction
 - Allows the incorporation of prior knowledge
 - Issues: noisy, computationally expensive
- Maximum likelihood expectation maximization (ML-EM) (Shepp & Vardi 1982)
 - Iterative statistical reconstruction
 - For emission tomography, has recently surpassed FBP in popularity
 - Advantages include: Poisson statistics, nonnegativity constraint, incorporation of system details
 - Issues: increasing noise, computationally expensive

45

ML-EM Brief Derivation

Mean number of photons detected in detector bin *d*:

$$\overline{n}_d = \mathop{\bigotimes}_{b=1}^{B} p_{b,d} \hat{I}_b$$

 $p_{b,d}$: probability that photon emitted in voxel *b* is detected in bin *d* (system matrix) \hat{f}_b : mean number of emissions in voxel *b*

Number of detected particles is a Poisson random variable, so the probability of detecting n_d^* photons in detector bin *d*:

$$P(n_d^*) = e^{-\overline{n}_d} \frac{\overline{n}_d^{n_d^*}}{n_d^*!}$$

Likelihood function:

$$L(\hat{l}) = P(n_d^* | \hat{l}) = \bigcap_{d=1}^{D} P(n_d^*) = \bigcap_{d=1}^{D} \frac{e^{-\bar{n}_d} \bar{n}_d^{n_d^*}}{n_d^*!}$$

Log-likelihood will have the same maximum location: $\ln(L(\hat{l})) = \bigotimes_{d=1}^{D} \left(-\overline{n}_{d} + n_{d}^{*} \ln(\overline{n}_{d}) - \ln(n_{d}^{*}!) \right)$ $= \bigotimes_{d=1}^{D} \stackrel{e}{\ominus} - \bigotimes_{b=1}^{B} p_{b,d} \hat{l}_{b} + n_{d}^{*} \ln(\bigotimes_{b=1}^{B} p_{b,d} \hat{l}_{b}) - \ln(n_{d}^{*}!) \stackrel{i}{\bigcup}$ $\stackrel{i}{\bigcup}$

Take derivative and set to zero to find maximum:

$$\frac{\sqrt{\ln(L(\vec{l}))}}{\sqrt{n}_{d}} = -\overset{D}{\underset{d=1}{a}} p_{b,d} + \overset{D}{\underset{d=1}{a}} \frac{n_{d}^{*}}{\overset{D}{\underset{b'=1}{a}} p_{b',d} \hat{l}_{b'}} p_{b,d} = 0$$

Multiply by \hat{I}_{b} and solve: $\hat{I}_{b}^{(i+1)} = \frac{\hat{I}_{b}^{(i)}}{\hat{a}_{d=1}^{D} p_{b,d}} \hat{a}_{d=1}^{D} \frac{n_{d}^{*}}{\hat{a}_{b'=1}^{B} p_{b',d}} \hat{I}_{b'}^{(i)}} p_{b,d}, \ b = 1, \square, B$ 46

ML-EM can be viewed as a series of projections and backprojections

TITAN with Image Reconstruction (TITAN-IR)

48

Analyzing TITAN-IR

- 1) 2-D elliptical water phantom with two circles of high intensity source (i.e., lesions)
- 2) Jaszczak: 3-D quality

assurance phantom, cold sphere region

3) NCAT: NURBS-based cardiactorso, 3-D heterogeneous phantom

49

Reconstruction Analysis

- Visually display reconstructed images
- Plot profiles through important areas of reconstructed images •
- Quality metrics: ۲
 - Mean relative error (MRE)

MRE =
$$\frac{1}{N_d} \mathop{a}\limits_{d=1}^{N_d} \frac{\left| \hat{n}_d^{(i)} - n_d^* \right|}{n_d^*}$$

Mean squared error (MSE) N_{J}

MSE =
$$\frac{1}{N_d} \sum_{d=1}^{N_d} (\hat{n}_d^{(i)} - n_d^*)^2$$

 $\hat{n}_{d}^{(i)}$ = counts in detector bin *d* at iteration *i* n_d^* = measured counts in detector bin d

$$\overline{I}_l$$
 = average source intensity in lesion
 \overline{I}_0 = average reference background intensity

• Contrast
$$C_l = -$$

$$C_l = \frac{\overline{I}_l - \overline{I}_0}{\overline{I}_0}$$

• Noise =
$$\frac{1}{\overline{I_0}} \overset{\mathfrak{A}}{\underset{e}{\varsigma}} \frac{\overset{\mathfrak{A}}{\overset{}}}{\underset{i=1}{\overset{N_V}{\underset{i=1}{\circ}}} (I_i - \overline{I_0})^2 \overset{"o"}{\overset{}}{\underset{i=1}{\overset{\circ}{\underset{i=1}{\circ}}} (I_i - \overline{I_0})^2 \overset{"o"}{\overset{}}{\underset{i=1}{\overset{\circ}{\underset{i=1}{\circ}}} (I_i - \overline{I_0})^2 \overset{"o"}{\overset{}}{\underset{i=1}{\overset{\circ}{\underset{i=1}{\circ}}} (I_i - \overline{I_0})^2 \overset{"o"}{\overset{"o"}{\underset{i=1}{\circ}}} (I_i - \overline{I_0})^2 \overset{"o"}{\underset{i=1}{\circ}} (I_i - \overline{I_0})^2 \overset{"o"}{\underset{i$$

2) Jaszczak Cold Sphere Phantom

- 6 cold spheres with radii of 0.635, 0.795, 0.955, 1.27, 1.59, and 1.9 cm
- 185 MBq Tc-99m source (140 keV)
- Reference projection data obtained at 64 angles over 360° using SIMIND
- System matrix *p(b,d)*
 - Generated by Image Reconstruction Toolbox in MATLAB (models attenuation but not scatter)
 - Dimensions of (64x64x32) by (64x32x64)
- Initial guess is a uniform source distribution
- Three cases of projection data:
 - 1) No noise & no collimator blur
 - 2) Noisy & no collimator blur
 - 3) Noisy collimated data

🐺 Virginia Tech

51

Jaszczak Cold Sphere Phantom: Noisy Collimated Projection Data

Collimator	Hole Diameter	Septa Thickness	Length	Acceptance Angle
GE-LEGP*	0.25 cm	0.03 cm	4.10 cm	1.83°
SE-LEHR ⁺	0.111 cm	0.016 cm	2.405 cm	1.39°

*General Electric – Low energy, general purpose collimator

⁺Siemens – Low energy, high resolution collimator

Jaszczak Cold Sphere Phantom: Noisy Collimated Projection Data

Contrast in each cold sphere (radius) for noisy GE-LEGP (1.83°) projection data

Contrast in each cold sphere (radius) for noisy SE-LEHR (1.39°) projection data

53

Jaszczak Cold Sphere Phantom: Noisy Collimated Projection Data

Reconstruction of noisy GE-LEGP data

Reconstruction of noisy SE-LEHR data

Comparison of TITAN-IR with Other Methods Based on Jaszczak Phantom:

- Filtered backprojection (FBP)
 - Traditional standard for image reconstruction
 - Implemented in MATLAB and includes the Chang attenuation correction*
- ML-EM with System Matrix (SM) only
 - Standard ML-EM reconstruction method
 - Algorithm written in Fortran 90
 - Uses the same system matrix that TITAN-IR uses for backprojection

*L.-T.Chang, "A method for attenuation correction in radionuclide computed tomography," IEEE Trans. Nucl. Sci., 1978

III Virginia Tech

Comparison of Methods with Jaszczak Phantom

Algorithm	Noiseless, no collimator blur	Noisy, no collimator blur	Noisy GE-LEGP	Noisy SE-LEHR
FBP	••••			
ML-EM with SM only	••••			
TITAN-IR				56

NSEL Noter Stores and Engineering Laboratory Verginia Tech Research Carles: Addingson, VA

Comparison of Methods with Jaszczak Phantom

Contrast in reconstruction of noisy SE-LEHR projection data

57

Computation Time

Jaszczak phantom: Noisy GE-LEGP projection data

Computing environment [Up to 16 cores, Intel Xeon E5 2.6 GHz processors, 16 GB per core]

Processor Cores	Wall Clock Time (s)	Speedup
1	1665.7	-
2	905.1	1.8
4	524.3	3.2
8	341.4	4.9
16	172.0	9.7

Spent fuel Pool & Cask Modeling

- Standard approach Full Monte Carlo calculations face difficulties in this area
 - Convergence is difficult due to undesampling (due to absorbers)
 - Convergence can also be difficult to detect
 - Computation times are very long, especially to get detailed information
 - Changing pool configuration requires complete recalculation

The RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system

RAPIDTM Code System

- RAPID is capable of calculating the system eigenvalue k_{eff}, pin-wise axially-dependent 3D fission density distribution, and detector response.
- RAPID is comprised of **six stages**:

Pre-calculation

Stage 1 – Calculation of material concentration Stage 2 - Calculation of fission matrix (FM) coefficients Stage 3 - Calculation of field-of-view (FOV) Stage 4 – Calculation of importance function

Calculation

Stage 5 - Processing of FM coefficients & Solution of a linear system of equations (i.e., FM formulation)

Stage 6 – Calculation of Detector response

Determination of fission Matrix (FM) Coefficients

• Eigenvalue formulation

$$F_i = \frac{1}{k} \sum_{j=1}^N a_{i,j} F_j$$

- *k* is eigenvalue
- *F_j* is fission source, *S_j* is fixed source in cell j
- $a_{i,j}$ is the number of fission neutrons produced in cell *i* due to a fission neutron born in cell *j*.
- Subcritical multiplication formulation

$$F_{i} = \sum_{j=1}^{N} (a_{i,j}F_{j} + b_{i,j}S_{j}),$$

• $b_{i,j}$ is the number of fission neutrons produced in cell *i* due to a source neutron born in cell *j*.

FM Coefficients Determination : a Multi-layer approach

• Brute force approach:

• For a typical <u>spent nuclear fuel pool</u> with a sub-region of 9x9 assemblies:

 $N = 9 \times 9 \times 264 = 21,384$ total fuel pins

- Considering 24 axial segments per rod, then N = 513,216
- Standard FM would require N = 513,216 separate fixedsource calculations to determine the coefficient matrix
 - A matrix of size N x N = 2.63391E+11 total coefficients (> 2 TB of memory is needed)
- The straightforward approach is clearly NOT feasible
- Multi-layer, regional approach ((in the process of filing for a patent))
 - Determine coefficients as a function of different parameters (Stage 1)
 - Process coefficients for problem of interest (**Stage 3**)

9x9 array of assemblies in a pool

Rapid : Code System Structure

I²S-LWR – Reference Model

I²S-LWR FUEL ASSEMBLY

- 19x19 fuel lattice
 - 335 fuel rods, 24 control/guide tubes, 1 instrumentation tube
- U_3Si_2 fuel enriched to 4.95 wt-% ²³⁵U

SPENT FUEL POOL

- Based on AP1000 SFP
- Consider a 9x9 segment of SFP (81 assemblies)
- Storage cell walls made of Metamic[®] (B4C-Al) between SS plates

Pre-Calculation – p³RAPID Stage 1: Burnup Calculation with SCALE/TRITON

- **Need :** Material composition & Intrinsic source
- Use: SCALE 6.1 TRITON
 - The TDEPL option used to invoke NEWT 2D & ORIGEN
- For:
 - enrichment of 4.95 wt-%; burnups: 37, 59 GWd/MTHM; and, Cooling Times: 14 days, 1 & 9 years
 - Quarter assembly model used.
 - 49 different fuel materials (considering octal symmetry)

	20 38 42
	29 37 45
	24 28 36 45
	22 27 34 43
8 11 15	21) 26 33 42

Pre-Calculation – P³RAPID Stage 2: Coefficient calculations

• Using information from Stage 1,

• A database of FM coefficient is prepared

Comparison of RAPID with MCNP reference calculation

Test cases

- Performed eigenvalue calculations for a 2x2 segment of the reference SFP.
 - 4 test cases are defined, each containing different combinations of burnups/cooling times
 - Fuel region of the model partitioned into 32,256 fission regions (tallies)
- Reference MCNP eigenvalue parameters are:
 - 10⁶ particles per cycle,
 - 400 skipped cycles
 - 400 active cycles

Description of Test cases – Pool segments

*'0 year' cooling time refers to ~14 days

Comparison of Eigenvalues

	MCNP	RAPID	Rel. Diff.
Case	k _{eff}	k _{eff}	RAPID vs. MCNP (pcm)
1	0. 79998 (± 4 pcm)	0.80020	28
2	0.79511(± 4 pcm)	0.79532	26
3	0.60444(± 3 pcm)	0.60425	-31
4	0.58330(± 3 pcm)	0.58322	-14

Comparison Radial fission densities (FD)

MCNP Predictions (CASE 1)

1-σ Relative Uncertainty

RAPID VERSUS MCNP(CASE 1)

24.00

20.00

16.00

12.00

8.00

4.00

0.00

-4.00

-8.00

MCNP Predictions (CASE 2)

1-σ Relative Uncertainty

RAPID VERSUS MCNP (CASE 2)

MCNP Predictions (CASE 3)

$1 - \sigma$ Relative Uncertainty

RAPID VERSUS MCNP (CASE 3)

% Relative Difference

MCNP Predictions (CASE 4)

1-σ Relative Uncertainty

RAPID VERSUS MCNP (CASE 4)

% Relative Difference

Computation Time

	MCNP		RAPID		
Case	Cores	Time [min)	Cores	Time [min]	Speedup
1	16	1020 (17 hrs)	1	0.50	2044
2	16	1013 (17 hrs)	1	0.51	1980
3	16	1082 (18 hrs)	1	0.50	2163
4	16	1149 (19 hrs)	1	0.50	2284

Comparison of RAPID to MCNP reference models

- Single assembly & full cask models -

UirginiaTech

RAPID vs. MCNP – Single assembly model

- RAPID calculated and MCNP system eigenvalue (k_{eff}) and pin-wise, axiallydependent fission density distribution, i.e, 6,336 tallies, are compared.
- Significant speedup is obtained using RAPID on just a single computer core.

Case	MCNP	RAPID
k _{eff}	1.18030 (± 2 pcm)	1.18092
k_{eff} relative difference	-	53 pcm
Fiss. density adjusted rel. uncertainty	0.48%	-
Fission density relative diff.	-	0.65%
Computer	16 cores	1 core
Time	666 min (11.1 hours)	0.1 min (6 seconds)
Speedup	-	6,666

RAPID vs. MCNP – Full cask model

- RAPID calculated and MCNP system eigenvalue (k_{eff}) and pin-wise, axiallydependent fission density distribution, i..e, **202,752** tallies, are compared.
- The speedup increases with the dimension of the model.

Case	MCNP	RAPID
k _{eff}	1.14545 (± 1 pcm)	1.14590
Relative Difference	-	39 pcm
Fission density rel. uncertainty	1.15%	-
Fission density relative diff.	-	1.56%
Computer	16 cores	1 core
Time	13,767 min (9.5 days)	0.585 min (35 seconds)
Speedup	-	23,533

GBC-32 3D fission density distribution

Determination of neutron Dose

• Given the *neutron dose-to-flux ratio* $(f_n) \left(\frac{\frac{mrem}{hr}}{\frac{\#}{cm^2-s}}\right)$, then

$$Dose = \langle \psi f_n \rangle$$

 Then, Dose is calculated using the adjoint-function methodology by

 $Dose = \langle \psi^* S \rangle$

Where,

$$H^*\psi^*=f_n$$

TITAN Calculation Model

- Multigroup cross-section (energy group structure, Pn order)
- Calculation model (segment of the cask), Field-Of-View (FOV)?
- Spatial meshing, angular quadrature order, finite-differencing formulation, convergence

115.0

TITAN calculation

- 1. 2-assembly model
- 2. size = 91.24x71.27x40 cm³
- 3. 2.5cm x 2.5cm x 5cm voxel air detector
- 4. # meshes = 386,286,
- S10 angular quadrature set
 P3
- 5. 19-group [BUGLE-96 library; groups 3-21]
- 6. 8 cores
- 7. 70 min

Dose calculation

• The dose formulation (i.e., detector response) is expressed by:

$$D = \sum_{g=3}^{21} \sum_{i=1}^{N_{cell}} \psi_{i,g}^* (\chi_g S_i)$$

- χ_g is the Watt spectrum for energy group g, $\psi_{i,g}^*$ is the importance function of cell *i* for group *g*, and *S_i* is the RAPID calculated neutron source in cell *i*.
- The calculated dose is:

Dose per unit source =
$$7.79 \cdot 10^{-12} \left[\frac{rem}{hr} \right]$$

Detector field-of-view

• More than 90% of the dose evaluated at the canister's surface is due to the outermost row of assemblies, near the boundary.

Experimental Benchmarking of RAPID

Phase 1

Benchmark facility - US Naval academy Subcritical (USNA-SC)

- A cylindrical pool with natural uranium (fuel) and light water (moderator)
- There are a total of 268 fuel rods, arranged in a hexagonal lattice
- Fuel: hollow aluminum tubes containing 5 annular fuel slugs

• Neutron source: PuBe

Whole Core - Total Neutron Flux

Whole Core : Neutron flux Distribution

NSEL Noder Sterce and Engineering Laborato Verini Tech Research Cartes, Atlinguo,

X

94 UirginiaTech

Whole Core : Relative Uncertainties of Neutron Flux

95 UirginiaTech

Experiments

- Count rate in a ³He proportional counter was measured by placing the counter within the annulus of each fuel pin
- Neutron counts are determined in fuel pins along three radial profiles (11, 12, & 13) shown in the figure.

Comparison of reaction rates (Counts) of ³He detector [experiment vs calculation]

Estimated Detector Efficiency based on least-squares minimization

$$Eff = \frac{\sum_i c_i m_i}{\sum_i c_i^2}$$

Where, m_i = Measured response at position *i* c_i = Calculated response at position *i*

$f = \frac{c}{m}$ (Ratio of calculated to measured responses)

98 **W**irginiaTech

Virtual Reality - Phase 1

- Two of my graduate students (Nate Roskoff and Val Maslcolino) are working with me and Drs. Polys and Rajamohan and a student from School of Arts and Design in this project
- Tasks
 - Development of a **connectivity environment** between the visualization systems in *Blacksburg and Arlington*. This will make possible seamless interaction in a virtual environment between collaborators that are geographically separated.
 - Development of a VRS for a spent nuclear fuel pool. This virtual model tool includes our RAPID code system for monitoring the pool in real time.
- We have developed software using Paraview and x3dom packages (examples are available at <u>http://nsel.ncr.vt.edu/vrs.html</u>)

Virtual Spent Fuel Pool, Virtual pool-assembly & real-time RAPID • calculation

٠

Conclusions

- MRT methodology allows for development of real-time tools for analysis of nuclear systems
- Thus far, we have developed
 - INSPCT-S, AIMS, TITAN-IR, & RAPID
- We have demonstrated that indeed we obtain accurate, detailed solution in real time!
- This is especially true for RAPID code system that has been applied to the simulation of spent fuel pools and casks
 - Pin-wise, axially dependent fission density is determined in 35 seonds
- Further, it is demonstrated that after about 18 hours of calculation MCNP has not fully convergence near the absorber racks, i.e., difficulties with undersampling.
 - Standard eigenvalue Monte Carlo has difficulties with HDR, undersampling, and correlation
 - The FM approach used in RAPID is a solution to above difficulties
 - The RAPID MRT algorithm is able to **overcome the main issues** related to Monte Carlo eigenvalue calculations such as source convergence and cycle-to-cycle correlation

Ongoing & Future Studies

- Continued sensitivity analysis of RAPID for different burnups
- Complete experimental benchmarking of RAPID using the U.S. Naval Academy's subcritical facility
 - Preliminary experimental benchmarking results were presented at the recent INMM meeting, July 2016.
- Initiated determination of statistical uncertainties associated RAPID calculated eigenvalue and fission density
 - i.e., Propagation of the uncertainties of the FM coefficients
- External dose/detector response calculation has been implemented in RAPID using the TITAN-calculated importance function methodology*
- Extend RAPID for material identification
- An automated methodology for the determination of the FOV of a detector is under development.
- TITAN dose calculation will be benchmarked against a reference A³MCNP (Automated Adjoint Accelerated MCNP) code prediction.
- Developing virtual reality system for a spent fuel pool

Thanks!

Questions?

A new book

Monte Carlo Methods for Particle Transport

Alireza Haghighat

104 UirginiaTech