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Abstract. This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle
transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is
capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density
throughout a UNF cask. We study the source convergence based on the analysis of the different parameters
used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single as-
sembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of
eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in
excellent agreement with the reference MCNP solutions, while requiring significantly less computation time
(i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for
the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant
uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and
its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.

1 Introduction
To ensure criticality safety and maintain a high level
of security of Used Nuclear Fuel (UNF), it is neces-
sary to perform detailed Particle Transport simulations.
The commonly used technique is the 3-D, continuous en-
ergy Monte Carlo method that is time-consuming and,
for eigenvalue calculations, may have difficulties with the
source convergence [1, 2]. Wenner and Haghighat [2] and
Dufek [3] demonstrated that in criticality problems with
high dominance ratio and/or under-sampling possibilities,
the fission matrix (FM) methodology [1] should be used in
order to be able to obtain unbiased solution.

The RAPID (Real-time Analysis for Particle transport
and In-situ Detection) code system [4] is based on the
Multi-stage Response-function Transport (MRT) method-
ology [5], and uses the FM formulation to determine
eigenvalue, subcritical multiplication and fission density
distribution of nuclear systems. This paper uses a bench-
mark problem similar to the GBC-32 Cask [6] to evaluate
the accuracy and performance of RAPID against the re-
sults of a reference MCNP [7] solution. We performed a
detailed sensitivity analysis on a single-assembly model in
order to determine the MCNP eigenvalue parameters nec-
essary to obtain a reliable reference solution. These results
provided a guide for the selection of an appropriate set
of parameters for the eigenvalue calculation for the whole
cask.

The paper is organized as follows. Section 2 discusses
the RAPID code system and its MRT approach. Section 3
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introduces the benchmark problem. Section 4 introduces
the methodology used to analyze results. Section 5 dis-
cuss the results of different cases to identify the best set
of eigenvalue parameters, and compares the selected case
with the RAPID calculation. Section 6 gives the conclu-
sions and future work perspectives.

2 RAPID Code System

To overcome the source convergence difficulty and com-
putational effort of straightforward eigenvalue Monte
Carlo calculations, the RAPID code system has been de-
veloped based on the MRT methodology. For a UNF pool
or cask, RAPID is capable of quickly and accurately calcu-
lating eigenvalue, subcritical multiplication, pin-wise, axi-
ally dependent fission densities, and detector responses for
monitoring a pool or cask. RAPID uses the Fission Matrix
(FM) method for eigenvalue calculations, and the adjoint
function methodology for the detector response calcula-
tions. RAPID partitions a problem into stages in which
FM coefficients and importance functions are determined
for different values of the key parameters such as enrich-
ment, burnup, geometry, and cooling time. Then, it uses a
system of equations to solve for eigenvalue and eigenfunc-
tion and the adjoint function methodology for determining
a detector response. The methodology has been succes-
fully demonstrated for spent fuel pools [4].

2.1 The Fission Matrix approach

The FM method can take two forms, depending on the
type of problem. For a sub-critical multiplication problem,
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in which the fission source is driven by an independent
source in the spent fuel (i.e., spontaneous fission and (α, n)
reactions), the induced fission source in cell i is given by
Equation 1.

Fi =

N∑

j=1

(ai, jF j + bi, jS j) (1)

Where F j is the induced fission source strength in fuel pin
j, S j is the intrinsic (or independent) source strength in
fuel pin j, ai, j is the number of fission neutrons directly
produced in fuel pin i due to a fission neutron born in fuel
pin j, bi, j is the same as ai, j except for intrinsic source neu-
trons. These values are different because S and F have dif-
ferent spatial and spectral distributions within each cell. N
is the total number of computational cells (which could be
a whole assembly, a single fuel pin, or a fraction thereof).

We also consider the eigenvalue problem as in Equa-
tion 2.

Fi =
1
k

N∑

j=1

ai, jF j (2)

The method results in a set of N linear equations, which
can be solved for F⃗ and k given the ai, j coefficients. The
main task is to determine the coefficients ai, j and bi, j in
the case of subcritical multiplication. Since not all the re-
gions are coupled, i.e., have non-zero coefficients, we have
developed a multi-layered approach to determine the nec-
essary coefficients.

Coefficients ai, j are calculated through fixed-source
Monte Carlo calculations, in which neutrons are originated
in cell j and fission neutrons born in cell i’s are tallied.
The source neutrons are sampled over energy according to
the Watt fission spectrum, isotropically. For bi, j the same
applies except that neutrons are sampled according to the
spontaneous fission and (α, n) reactions spectra.

3 Benchmark problem

The GBC-32 cask is loaded with 32 Westinghouse 17x17
OFA/V5 fuel assemblies (FA) of different burnups [6]. For
the purpose of this work, the cask has been loaded with
fresh fuel with 4% wt. enrichment only. The model con-
sists of the 32 FAs contained in a stainless steel canister.
The canister is equipped with Boral plates encased in Alu-
minum clads between the FAs, and it is placed in a Stain-
less Steel cylinder. The system is flooded with water. The
model is depicted in Figures 1a and 1b. Figure 2 shows
one assembly of the GBC-32 Cask.

For the purpose of analysis, two representative pins are
highlighted (circled black) in Figure 2: pin (1,9) near the
absorber panel on the left of the assembly, and pin (10,10)
top-right of the central guide tube. These two pins have
been chosen to plot fission density axial distributions be-
cause of being subject to the lowest and the highest values
of fission density, respectively.

Figure 1. a) xy (at mid active height) and b) xz (at y = 0) cuts of
the GBC-32 Cask model.

Figure 2. xy (at mid active height) cut of the unit cell of the
GBC-32 Cask model.

4 Methodology

The aim of this work is to compare the RAPID calculated
ke f f and pin-wise axial fission densities to those of a refer-
ence MCNP calculation. To obtain an accurate reference
solution, an analysis is performed to obtain the best com-
bination of the eigenvalue parameters used in the MCNP’s
KCODE calculations.

4.1 Determination of eigenvalue parameters in
MCNP

In any Monte Carlo eigenvalue calculation, a major issue
is achieving an accurate fission source distribution. This
requires determination of three MCNP parameters, includ-
ing number of skipped cycles (NSK), number of active cy-
cles (NAC), and number of histories per cycle (NPS).

Additionally, the variance of the fission neutron source
may be significantly biased by the presence of cycle-to-
cycle correlation, which is difficult to detect and may cause
MCNP reported variance to be underestimated [8]. This
phenomenon arises from the fact that the power method
[1] (used for eigenvalue Monte Carlo calculations) com-
putes the fission source at iteration k + 1 based on the dis-
tribution at iteration k. The random numbers generated by
the pseudo-random number generator (PRNG) for a cer-
tain iteration will be affected by the previous cycles, i.e.,
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correlated. This effectively causes the fission density tal-
lies to oscillate less than their actual statistical uncertainty,
leading to an underprediction of the computed uncertainty.
This effect usually arises in the fission density distribu-
tion tallies and not in the ke f f since the latter is an integral
quantity.

In an attempt to detect the potential underprediction of
the MCNP reported tally uncertainty, a replication study is
performed for a fixed set of the eigenvalue parameters by
changing the seed of the PRNG.

4.2 Analysis approach for the establishment of a
reference MCNP single-assembly model

The Monte Carlo eigenvalue parameters, NPS, NSK, and
NAC, have been investigated by analyzing the eigenvalue
(ke f f ), the normalized fission density(i.e., source distri-
bution) and the associated uncertainties for the single-
assembly model. The fission density is determined in 24
axial intervals for every fuel pin in the model, resulting in
6336 tally regions.

Convergence of the source is examined through the
following techniques for different combinations of the
eigenvalue parameters:

• The Shannon entropy stabilization as a function of gen-
erations [9]. It is worth noting that, as demonstrated
by Wenner and Haghighat in [2], this method may fail
to correctly diagnose the source convergence in loosely
coupled problems.

• The L∞, L1, and L2 norms of the relative differences
of the fission neutron density tallies with respect to the
most accurate calculation are computed. These norms
are compared to the norms of the uncertainties associ-
ated with each tally for the particular calculation, and
are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L∞ − norm : ∥X∥∞ = max
i
|xi|

L1 − norm : |X| = 1
Nt

Nt∑
i=1

xi

L2 − norm : ∥X∥ = 1
Nt

√
Nt∑
i=1

x2
i

(3)

where X is a vector composed of Nt elements. X will be
either the vector of relative differences or uncertainties.
In principle, the norm of the relative difference vector
should be lower than the norm of the statistical uncer-
tainty if the source has converged. This would indicate
that, on average, the variation of the results from case
to case is within the statistical uncertainty. Relative dif-
ferences are computed for each of the 6336 tally with
respect to the most detailed calculation as follows:

Rk,l =
S k,l − S k,md

S k,md
k = 1, 6336 (4)

where Rk,l is the value of the relative difference of the
k-th tally for the l-th case, S k,l is the value of the k-th
tally for the l-th case, and S k,md is the value of the k-th
tally for the most detailed (md) case.

• The Center of Mass (COM) [1] is calculated by:

r̄ =
1
M

Ntallies∑

i=1

miri (5)

where mi is fission density at region i, ri is the distance
between region i and geometric center, M is the total fis-
sion density of the assembly, and r̄ is the COM distance
to the geometric center. The COM position evaluated in
Equation 5 should oscillate around the geometric center
of the model for a symmetric problem.

In addition to the aforementioned analyses, based on
a select parameters combination we performed repetition
of the same run with different PRNG seeds in order to
identify the presence of possible cycle-to-cycle correlation
through the approach showed in [8]. From the repetition
of the run, the average MCNP calculated variance is cal-
culated as follows:

σMCNP =
1
Ns

Ns∑

i=1

σi (6)

where Ns is the number of different seeds used and σi is
the standard deviation obtained with MCNP for each of
the runs.

Having Ns different values for the same quantity, the
"real" standard deviation of the sample can be defined as:

σreal =

√√√
1

Ns − 1

Ns∑

i=1

(xi − x̄)2 (7)

where xi is the value of a certain quantity calculated for
the i-th seed, and x̄ is the average of all these values.

By calculating the value of these two standard devia-
tions, an indication of the underestimation of the MCNP
variance due to cycle-to-cycle correlation is provided:

fs =
σreal

σMCNP
(8)

The fs parameter is evaluated using Equation 8 for the sys-
tem eigenvalue, ke f f , and for each of the axially dependent
pin-wise fission density tallies.

Based on the above described evaluation process, a
reference MCNP calculation is established for the single-
assembly model to be compared with RAPID results.

4.3 Establishment of the full-cask MCNP reference
model

Based on the results of Section 4.2, the set of parameters
selected for the single-assembly are scaled to represent a
full-cask model.

Since the assemblies are separated by absorbing racks,
thus assemblies are loosely coupled, the whole-cask model
is established by keeping NAC and NSK constant with re-
spect to the single-assembly case.

The NPS parameter, in principle, should be scaled pro-
portionally to the increase in the number of tally regions,
resulting in a scale-up factor of 32. However, since a
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NPS value of 106 (with 144 particles per tally region)
has been used for the single assembly model, the direct-
scaling approach would lead to prohibitive computation
times. Therefore, we have used a reasonable NPS of 105

per assembly (demonstrated in Section 5.1), i.e., 3.2 · 106

for the full cask.

4.4 Comparison of MCNP reference models to
RAPID calculations

The RAPID system calculation is compared to the MCNP
reference calculation for both the single-assembly and the
full-cask models. Note that the full-cask model is only
partially converged because of time limitations. The quan-
tities analyzed are the criticality eigenvalue parameter of
the system ke f f and the pin-wise axial fission density dis-
tributions. The relative differences between the two meth-
ods are calculated and plotted, and maximum and average
values are tabulated.

5 Results

This section is divided into four main parts: in Section
5.1 the parametric study of the single-assembly problem
to assess adequate eigenvalue calculation parameters to
establish a referene MCNP solution is presented; Section
5.2 addresses the cycle-to-cycle correlation issue; while in
Sections 5.3 and 5.4 the results of the RAPID code are
compared to the MCNP reference calculation for the sin-
gle assembly and full cask models, respectively.

5.1 Eigenvalue Parameters

The parametric analyses are made by independently vary-
ing the three MCNP criticality parameters (NAC, NPS,
and NSK) in order to isolate the effects of the variation
of each of them.

The NAC study has been conducted fixing NSK to
1000 and NPS to 106, varying NAC from 500 to 3500 in
steps of 500. The Shannon entropy behavior is presented
in Figure 3 as a function of the cycle.

Figure 3. Shannon entropy as a function of cycles.

Figure 3 shows that the value of the Shannon entropy
oscillates around a stable value for NAC greater than 300.

Such a behavior is usually interpreted as a sign of source
convergence [9].

Figure 4 presents the system eigenvalue, ke f f , as a
function of NAC with the respective standard deviation.

Figure 4. a) k ± σk for different NAC values.

Above figure shows that ke f f has converged, and the
various runs differ by less than one standard deviation.
Figure 5 instead shows the behavior of the statistical un-
certainty σk as a function of NAC.

Figure 5. a) σk behavior for different NAC values.

The statistical uncertainty shown in Figure 5 correctly
drops as 1/

√
N, as expected based on the Central Limit

Theorem [1].

Figure 6 shows the percentage distance of the COM
from the expected geometric center, relative to half the ac-
tive fuel height, for varying NAC:

r̄n(%) =
100

H/2
∑Nt

i=1 S i,n

Nt∑

i=1

riS i,n (9)

where ri is the distance of the ith region from the center
of the assembly, S i,n is the fission density value in the ith
region for the nth run, and H is the active fuel height.

    
 

DOI: 10.1051/, 05025 (2017) 715301EPJ Web of Conferences 53 epjconf/201
ICRS-13 & RPSD-2016

5025

4



Figure 6. Center of Mass distance from geometrical center

Figure 6 shows that the COM oscillates of less than
0.5% (with respect to half the active fuel height along the
z-direction). Such an oscillation is reasonable and indi-
cates that the source has converged.

For the fission density distribution, the norms of the
Rk,l vector (|R|l, ∥R∥l, and ∥R∥∞,l) have been computed as
described in Section 4.2 for every run l. Additionally, the
norms of the vector Uk,l, containing the relative uncertain-
ties of each tally k as output from MCNP (|U |l, ∥U∥l, and
∥U∥∞,l) have been calculated. Figures 7, 8, and 9 show the
behavior of these norms as a function of NAC.

Figure 7. Comparison of relative differences and relative uncer-
tainties L1-norms, |R|l and |U |l.

Figure 8. Comparison of relative differences and relative uncer-
tainties L2-norms, ∥R∥l and ∥U∥l.

Figure 9. Comparison of relative differences and relative uncer-
tainties L∞-norms, ∥R∥∞,l and ∥U∥∞,l.

Figures 7, 8, and 9 indicate that the relative differences
are on average higher than the statistical uncertainty asso-
ciated to the calculation.

Figures 10 and 11 show the fission density axial distri-
bution in the representative pins (10,10) and (1,9) shown
in Figure 2.

Figure 10. Fission density axial distribution in central pin -
(10,10)

Figure 11. Fission density axial distribution in pin near absorber
- (1,9)

Above figures show that the changes in the axially-
dependent fission density distributions are on average
higher than the MCNP predicted uncertainty. However,
the shape is basically unaffected by the increasing number
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of active cycles, except for the NAC=500 (i.e., the lowest
number considered) curve being slightly offset.

Similar analyses have been done for the NSK and NPS
parameters independently, keeping fixed the other two. In
all the cases, simlar results are obtained, leading to the
following conclusions:
• The criticality eigenvalue, ke f f , converges and varies

within the uncertainty for all the various runs;
• The shape of the fission density distribution is converged

while on average the variation of the tallies is above the
statistical uncertainty, suggesting that these could be un-
derestimated;
• The Shannon entropy and COM behaviors are stabilized

and would suggest that the fission source is not varying
much and is symmetric as expected.
• The norms of the relative differences are higher than the

statistical uncertainties ones.
The first three points suggest that the fission source

has converged. However, the norms show an unexpected
behavior: this can be caused either by a bias in the sam-
ple averages calculated by MCNP (i.e., a non-converged
source, in contrast with the first three analyses) or an un-
derestimation in the statistical uncertainties (e.g., due to
cycle-to-cycle correlation). Section 5.2 analyzes the latter
phenomenon.

5.2 Cycle-to-cycle correlation investigation

In order to assess the effect of the cycle-to-cycle correla-
tion on the computed variance, we performed a replication
study keeping the same set of MCNP criticality parame-
ters and changing the PRNG seed. In this way, a "real"
standard deviation is calculated and compared to the av-
erage MCNP uncertainty, as described in Section 4.2 and
in [8]. This study was performed with smaller criticality
parameters (NPS=1E6, NSK=300, and NAC=500) with
respect to the study done in Section 5.1. This is necessary
because significant computation is needed for running the
50 replication cases.

The approach is applied to both the criticality eigen-
value, ke f f , and each of the 6336 fission density tallies.
Table 1 give ke f f and the associated standard deviations
("real" and MCNP calculated).

Table 1. Average ke f f , real and MCNP standard deviations, and
their ratio.

k̄ σMCNP(pcm) σreal(pcm) fσ
1.18028 3 2.59 0.8637

The analysis reveals that the "real" standard deviation,
calculated through this replication study, is actually lower
than the MCNP calculated one. This is mostly related to
the fact that MCNP standard deviations for ke f f are pro-
vided with a resolution of 1 pcm. This result is in line
with what is shown in Figure 4: the MCNP ke f f is con-
verged and the estimation of the statistical uncertainty is
accurate.

For the fission density values, the following quantities
are analyzed:
• The maximum of the real to MCNP standard deviation

ratios for all the k-th tallies:

fσ,max = max
k

[
fσ,k
]

(10)

• The average of the real to MCNP standard deviation ra-
tios for all the k-th tallies:

fσ,avg =
1
Nt

Nt∑

k=1

fσ,k (11)

• The weighted average of the real to MCNP standard de-
viation ratios using the fission density source for all the
k-th tallies:

fσ,wgt =

Nt∑
k=1

fσ,k · S k

Nt∑
k=1

S k

(12)

Table 2 summarizes the real and the MCNP standard de-
viations and these ratios. The statistical uncertainties for
the fission density distribution are underestimated by the
MCNP calculations by a factor greater than 2, identifying
a strong cycle-to-cycle correlation.

Table 2. Real to MCNP standard deviation ratios for fission
density tallies

aug max wgt

σreal (%) 0.72 1.60 0.67

σMCNP (%) 0.35 0.82 0.29

fσ 2.29 3.45 2.28

A 3D plot of the fσ ratios for these tallies is reported
in Figure 12.

Figure 12. fσ ratios for all the fission density tallies in the single-
assembly model.
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Figure 12 demonstrates that there is, on average, a sig-
nificant underestimation of the uncertainties and that this
underestimation changes significantly in different regions
of the model.

As discussed in References [8, 9], cycle-to-cycle cor-
relation is related to the method itself and it is not affected
by the use of a "better" set of MCNP parameters. There-
fore, we can compute the adjusted relative uncertainties
for the NAC, NSK, and NPS parametric analyses (Sec-
tion 5.1), multiplying each of the tally uncertainties by
the weighted average ratios, fσ,wgt. This would take into
account the presence of cycle-to-cycle correlation in the
comparison of the relative differences and relative uncer-
tainties for the various cases. The relative differences L1-
norms, |R|l, are plotted against the adjusted relative uncer-
tainties L1-norms, |R|l,ad j, for each of the parametric stud-
ies in Figures 13, 14, and 15.

Figure 13. Comparison of relative differences and adjusted rela-
tive uncertainties Norm-1, |R|l and |U |l,ad j as a function of NAC.

Figure 14. Comparison of relative differences and adjusted rela-
tive uncertainties Norm-1, |R|l and |U |l,ad j as a function of NSK.

Figure 15. Comparison of relative differences and adjusted rela-
tive uncertainties Norm-1, |R|l and |U |l,ad j as a function NPS.

The fσ should hold similar results even for higher
NAC, NSK, and NPS, since cycle-to-cycle correlation is
independent of these parameters, as long as the source
has converged, i.e., NSK is high enough [9]. Figures 13,
14, and 15 suggest that the tally variations are on average
within the statistical uncertainty associated to the method
for all the analyzed cases. Therefore, source convergence
is achieved for reasonably lower values of the MCNP crit-
icality parameters although the uncertainty calculated by
the code is underestimated due to the cycle-to-cycle cor-
relation. From this latter analysis we conclude that the
NSK=500, NAC=1000, NPS=106 constitutes a suitable
reference model for comparison with the RAPID code sys-
tem.

5.3 Comparison of RAPID and MCNP results for a
Single Assembly

The RAPID code was used to model the single assembly
reflected in the x−y directions. Table 3 presents the results
of the eigenvalue calculation.

Table 3. ke f f comparison of RAPID compared to MCNP
reference calculation.

Case ke f f
Rel. Diff.

[pcm]
MCNP Ref. 1.18030(2pcm1) -

RAPID 1.18091 52
1σ uncertainty

Above table shows that the RAPID ke f f calculation
(NSK=500, NAC=1000, NPS=106) is in very good agree-
ment with the MCNP reference calculation, with a relative
difference of 52 pcm.

Table 4 presents the computational time required for
both RAPID and MCNP.
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Table 4. Computation of RAPID and MCNP required
computation time.

Case Num. Time SpeedupCores [min]

MCNP Ref. 16 666 —(11.1 hours)

RAPID 1 0.102 6529(6.12 seconds)

Table 4 indicates that the RAPID calculation on 1 com-
puter core is 6500 times faster than the MCNP reference
calculation on 16 computer cores.

Figure 16 shows the axial fission distribution of the en-
tire assembly, i.e., integrated over the x−y dimensions) for
RAPID and the MCNP reference calculation. Note that
all uncertainties on the MCNP reference calculation are
1−σ. Uncertainties are within 0.05% for the x − y inte-
grated axially-dependent fission density and within 0.59%
for the pin-wise axially-dependent one.
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Figure 16. Axial fission density distribution (integrated over x-y
dimensions). Error bars represent 1σ uncertainties.

Figure 17 shows RAPID to MCNP relative differences
of pin-wise axially dependent fission density distributions.

Figure 17. Relative differences of RAPID vs MCNP calcu-
lated pin-wise axially dependent fission density for the single-
assembly.

The relative differences for all the regions are below
5%, with regions above 2% being those in the top and
bottom layers. This behavior at the fuel rod tips is due
to the assumed axial symmetry in the way FM coeffi-
cients are calculated. Maximum, average, fission-density
weighted average and adjusted-weighted average relative
it uncertainties for the MCNP single assembly calculation
are given in Table 5. Table 6 gives maximum, average,
and weighted-average relative differences of RAPID vs.
MCNP.

Table 5. MCNP relative uncertainties for fission density
distribution - Single-assembly

Relative uncertainties(%)
Max. Avg. Wgt. avg. Wgt. avg. adj.
0.59 0.25 0.21 0.48

Table 6. RAPID vs MCNP relative differences for fission
density distribution - Single-assembly

Relative differences(%)
Maximum Average Weighted avg.

5.00 0.92 0.69

Tables 5 and 6 demonstrate that RAPID and MCNP
calculated fission densities are in excellent agreement.

5.4 Comparison of RAPID and MCNP results for
the full-cask

As already discussed in Section 4.3, the set of parame-
ters used for the full-cask reference MCNP calculation are
NPS=3.2 · 106, NSK=500, NAC=1000.

ke f f for RAPID and MCNP reference calculations are
given in Table 7 for the full cask. These results show ex-
cellent agreement.

Table 7. ke f f comparison of RAPID compared to MCNP
reference calculation - Full cask.

Case ke f f
Rel. Diff.

[pcm]
MCNP 1.14545(1pcma) /
RAPID 1.14590 39
a1σ statistical uncertainty

The maximum, average, and weighted average uncer-
tainty values for the full-cask MCNP calculated fission
density distribution tallies are reported in Table 8.

Table 8. Full-cask MCNP calculated fission density distribution
uncertainties.

Relative uncertainties(%)
Maximum Average Weighted avg.

9.04 1.62 1.15
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Similar to the single-assembly case, the RAPID
to MCNP relative differences for the pin-wise axially-
dependent fission density distribution have been calcu-
lated. Figure 18 shows the 3D distribution of these relative
differences.

Figure 18. Relative differences of RAPID vs MCNP calculated
pin-wise axially-dependent fission density for the full cask.

Figure 18 shows how the relative differences are lower
than 2% the inner regions, where the MCNP statistical
uncertainties are smaller. The highest relative differences
are on the boundaries: it is important to note that, due to
under-sampling [10], the peripheral fission densities cal-
culated by MCNP are far from convergence and might
be significantly biased. Accurate estimation of the fission
density in these regions is required for detector responses
estimation and dose calculations on the outside surface of
the cask. Hence, the fission matrix approach should be
used instead of straight-forward Monte Carlo calculations
to achieve accurate unbiased detector responses. Cask
dose calculation has been recently implemented in RAPID
and demonstrated in [11]. The average relative difference,
weighted on the fission density distribution, amounts to
1.56%, comparable to the statistical uncertainty reported
in Table 8.

Table 9 shows the computational time requirements for
both the methods, demonstrating how a large nuclear sys-
tem as the full cask can be simulated in real time with
RAPID, with a significant speedup with respect to MCNP.

Table 9. Computation time of RAPID and MCNP reference
calculation - Single assembly.

Case Num. Time SpeedupCores [min]

MCNP Ref. 16 13,767 —(9.5 days)

RAPID 1 0.585 23,533(35 seconds)

Figure 19 shows RAPID calculated 3-D fission density
distribution.

Figure 19. 3-D fission density distribution in the GBC-32 Cask.

6 Conclusions

This paper examines the performance of the RAPID code
system for the simulation of a UNF cask benchmark,
GBC-32. Because of the presence of absorbing plates in
between the assemblies in a cask, any eigenvalue Monte
Carlo simulation faces with the difficulty of particle under-
sampling. Hence, it is necessary to examine carefully the
source convergence. To do so, a detailed statistical anal-
ysis is performed using a single assembly model with re-
flective boundary conditions.

This analysis showed the importance of carefully se-
lecting the criticality run parameters when using MCNP,
and underlined that substantial bias in the standard devia-
tion of the tallies might be caused by cycle-to-cycle corre-
lation, related to the nature of criticality calculations and
impossible to foresee. The RAPID code system, since it
is based on a set of physically based transport coefficients
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that do not require any eigenvalue calculation, doesn’t suf-
fer from any of these difficulties.

Based on the parametric analysis, an appropriate set
of eigenvalue parameters (NAC, NSK, NPS) have been
selected to establish both a single-assembly and full-cask
reference model for comparison with RAPID. It is demon-
strated that the calculated eigenvalue and fission density
distribution by the RAPID and MCNP code systems are in
excellent agreement with the reference MCNP results for
both the models, leading to average relative differences of
the order of a few percents mostly related to boundary ef-
fects that will be addressed in future work.

In addition, under-sampling may cause biased bound-
ary MCNP tallies even when large criticality parameters
are used. This issue is avoided using the FM approach,
since no Monte Carlo criticality calculations are neces-
sary. The calculation of external doses and detector re-
sponses is highly affected by the accuracy of the outer re-
gions, nearby the detector location, hence making the use
of codes based on the FM methodology, such as RAPID,
necessary to calculate these quantities.

Moreover, it is shown that the RAPID computation
time is significantly (several orders of magnitude) smaller
than the MCNP one, i.e., 35 seconds vs. 9.5 days on
16 cores. This speedup increases as the model becomes
larger.
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